Query Expansion for Visual Search using Data Mining Approach

Ph.D. Defense Presentation

Siriwat Kasamwattanarote シリワット カセッムワッタナロット 21 January 2016

Department of Informatics (National Institute of Informatics), SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan.

Note on major requirements from the previous presentation

Presentation

- 1. Discussing about weakness and limitation of the research. (done)
- 2. In which cases the method fails (done)
 - Evidences showing good/bad results.
- 3. Conducting experiments on larger datasets. (done)
 - MVS dataset/Instance search dataset

Thesis

- 1. Intensive literature review. (done)
- 2. Finishing thesis. (almost done)

Overview

rk

1. Introduction

1.1 Motivation

- Big images collection.
- Querying on-the-fly with mobile devices.
- Accuracy issue.
- State-of-the-art approaches
 - Bag-of-visual-word (**BoVW**)
 - Average query expansion (AQE)

1.1.1 Bag-of-Visual-Word (BoVW)^1

Image representation using BoVW technique.

Ref:

J. Sivic and A. Zisserman, "Video google: A text retrieval approach to object matching in videos," ICCV, pp.1470–1477, 2003.
 Michal Perdoch Ondrej Chum, J. M., Efficient Representation of Local Geometry for Large Scale Object Retrieval, *CVPR*, 2009, 9-16
 Lowe, D. G., Distinctive Image Features from Scale-Invariant Keypoints, *International Journal of Computer Vision*, 2004, 91-110
 Muja, M. & Lowe, D. G., Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, *VISAPP*, 2009, 331-340
 Philbin, J.; Chum, O.; Isard, M.; Sivic, J. & Zisserman, A., Object retrieval with large vocabularies and fast spatial matching, *CVPR*, 2007, 1-8

1.1.1 Bag-of-Visual-Word (BoVW)^[1](2)

Object-based image retrieval by BoVW

BoVW architecture diagram

R

Q = Query imageD = Database imagesR = Retrieved images

Ref: [1] J. Sivic and A. Zisserman, "Video google: A text retrieval approach to object matching in videos," ICCV, pp.1470–1477, 2003.

1.1.1.1 Similarity Calculation

$$sim(Q, I) = 1 - \left\| \frac{Q}{\|Q\|_1} - \frac{I}{\|I\|_1} \right\|_1$$

$\mathbf{R} = \{I_b \in D | I_b \text{ contains object appeared on } \mathbf{Q}\}$

Q = Query image
D = Database images
R = Retrieved images
I = Reference image

1.1.1.2 BoVW problem

Search

(kin mugi)

≠

Partially matched of an object / visual words on the **irrelevant image**.

1.1.2 Average Query Expansion (AQE)[1]

Ref:

[1] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, "Total recall: Automatic query expansion with a generative feature model for object retrieval.," ICCV, pp.1–8, 2007.

[2] K. Lebeda, J. Matas, and O. Chum, "Fixing the locally optimized RANSAC," BMVC, pp.1–11, 2012.

QE

All images will be averaged

0'

RANSAC spatial verification between images

1.1.2.1 AQE problem (inlier threshold = 4)

Normal query

inlier = 10 inlier = 7 inlier = 8 inlier = 7 inlier = 6inlier = 14

Bad condition query

Self-correspondences without query over-dependency?

Query Bootstrapping!!!

1.1.2.2 Query conditions

On-the-fly image retrieval.. **Good query** may not be as expected.

1.2 Research objective

- This research aims to relax the over-dependency on query verification.
 - By finding the *consistency among highly ranked images*, instead.
- We evaluate our methods on several standard datasets.
 - Oxford building 5k, 105k.
 - Paris landmark 6k.
 - Extended distractor with MIR Flickr 1M for (Oxford 1m and Paris 1m)
- Robustness on several query degradation cases.

Where we are?

Ref:

[1] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.

[2] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In ICCV, 2007.

[3] M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009.

[4] O. Chum, A. Mikulik, M. Perdoch, and J. Matas. Total recall II: Query expansion revisited. In CVPR, 2011.

[5] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. J. V. Gool. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In CVPR. IEEE Computer Society, 2011.

[6] R. Arandjelovic. Three things everyone should know to improve object retrieval. In CVPR, 2012.

[7] C. Yanzhi, L. Xi, D. Anthony, and H. Anton van den. Boosting object retrieval with group queries. In SPS, 2014.

Result overview

- Overall accuracy improvement
 Normal query
- Higher robustness to low quality queries

 Low resolution / Small object / Blur
 Noisy
 + ~26% (best)
 + ~19-26% (best)

+ 10-14% (best)

Overview

	5. Troposed methods
Visual word mining Spatial verification Automatic parameter tuning	
Conclusion	6. Future work
Research achievements	• Speed up
Pros and Cons	Binary feature
Limitation	
	Visual word mining Spatial verification Automatic parameter tuning Conclusion Research achievements Pros and Cons Limitation

2. Contributions list

Average improvement over the state-of-the-arts

1.	We proposed a "Query Bootstrapping (QB)" as a visual mining for query expansion		BoVW	AQE
	 To discover object consistency among highly ranked images by using Frequent Itemset Mining (FIM) Relaxed a strong constraint between a query image and first-round retrieved list. Gained higher robustness on low quality query. 	Q4-2013	+3%	-1%
2.	 We proposed an "Adaptive Support (ASUP)" tuning algorithm for FIM. To automatically provide an optimal support value (important parameter for FIM). Locally optimize support value for each query, for the best performance of each query. 	Q1-2014	+5%	+1%
3.	 We integrated a LO-RANSAC spatial verification (SP) based method to QB (QB + SP). To verify correspondences between a query and retrieved images. Give a chance for FIM to find correct co-occurrence patterns through the whole of verified images. Less constraint than AQE 	Q4-2014	+12%	+7%
4.	 We proposed an "Adaptive Inlier Threshold (ADINT)" for LO-RANSAC To find an inlier threshold automatically. Good for QB + SP. 	Q1-2015	+ 14%	+9%

Overview

2. Contributions list	3. Proposed methods
 Visual word mining Spatial verification Automatic parameter tuning 	
5. Conclusion	6. Future work
Research achievementsPros and ConsLimitation	Speed upBinary feature
	<section-header><section-header><list-item><list-item><list-item><section-header></section-header></list-item></list-item></list-item></section-header></section-header>

3. Proposed methods

QB / QB + SP architecture diagram

Intro - Frequent Itemset mining (FIM)

Related works that applied FIM

- Video mining [1]
 - Mining visual word motions into groups.
- Visual phrase mining [2]
 - Finding visual phrase lexicon.
 - Separating object out of background.
- Mining multiple queries [3]
 - Mining query patterns to better focus of targeted object.
- Mining for re-ranking and classification [4]
 - Voting image score by counting FIM patterns.

Our work closed to

- [3] FIM for multiple images.
- But we are on the result side.
 [4] FIM on result images.
- But we feed **back result** as AQE.

Non of them work directly on FIM for Query expansion!

[1] T. Quack, V. Ferrari, and L.J.V. Gool, "Video mining with frequent itemset configurations.," FIMI, pp.360–369, 2006.

[2] J. Yuan, Y. Wu, and M. Yang, "Discovery of collocation patterns: from visual words to visual phrases," CVPR, pp.1–8, 2007.

[3] B. Fernando and T. Tuytelaars, "Mining multiple queries for image retrieval: On-the-fly learning of an object-specific mid-level representation," ICCV, pp.2544–2551, 2013.

[7] W. Voravuthikunchai, B. Cr'emilleux, and F. Jurie, "Image re-ranking based on statistics of frequent patterns," ICMR, pp.129–136, 2014.

3.1 Contribution 1 - QB

- Mining co-occurrence visual words among highly ranked images.
 - FIM returns frequent patterns (fi).
- Constructing a new query (Q^{'''})
 - We regard *fi* is a representative form of the occurrences of visual words.
 - Considering a new term *fi* into a standard BoVW term (*tf-idf*)
 - Named as tf-fi-idf (or fi x tf-idf)

Back-projected visualization

Q‴

3.1 QB problem 1 (1)

• FIM is designed for

- Many transactions, Less items (n).
- Total possible patterns ≈2ⁿ
- BoVW size up to 1 million, slow down FIM.
 - Less images, many words (n).

3.1 QB problem 1 (2)

Ref:

[1] F. Rioult, J.F. Boulicaut, B. Cr'emilleux, and J. Besson, "Using transposition for pattern discovery from microarray data," DMKD, pp.73–79, 2003.

[2] F. Rioult, "Mining strong emerging patterns in wide sage data," 2004.

[3] F. Domenach and M. Koda, "Mining association rules using lattice theory (6th workshop on stochastic numerics)," 2004.

3.1 QB problem 2

Fixed support value and its performance

- How much support value is appropriate?
 - Too low support give too much patterns.
 - Too high support might give nothing.

3.2 Contribution 2 - ASUP

Adaptive Support tuning algorithm for *individual query*.

As we observed.. The optimal support is at the highest frequent patterns.

Pattern amount at each specific support range

3.2 ASUP problem (1)

BoVW result (*R*) may be dominated by irrelevant images.

The rest of images are mostly a branches and a tree \rightarrow

Top 10 images example.

Round1 R (BoVW)

Top 100 true positives (green)

Round2 R (QB)

3.2 ASUP problem (2)

• The performance is decreasing when the number of **top-k** is increasing.

3.3 Contribution 3 - QB + SP (1)

- Spatial verification is back
 - Properly for QB.
 - To give hints of verify *images*.
 - Mining will be more focused.

3.3 Contribution 3 - QB + SP (2)

High

Low

Accepting relevant images is fine!

Problem

How much inlier threshold should be set?Too low filtering nothing.

- Too high filtering everything.

Accepting irrelevant images leads high noise to FIM!

3.4 Contribution 4 – ADINT (1)

- Adaptive Inlier Threshold (ADINT) algorithm
 - 1. Feed top-k to LO-RANSAC

National Universit

- 2. Constructing the inlier count histogram.
- 3. Select a pivot on a peak.
- 4. Sweeping clockwise from a pivot with a radius of 0.9 (ADINT ratio)
- 5. The first point that cut histogram will be an Adaptive Inlier Threshold.

3.4 Contribution 4 – ADINT (2)

• Why ADINT ratio = 0.9?

100

Adaptive Inlier Threshold (ADINT)

■ Ox5k ■ Ox105k ■ Paris6k

3.4 Contribution 4 – ADINT (3)

• ADINT thresholding result

Overview

1. Introduction	2. Contributions list	3. Proposed methods
 Motivation Baseline problem 	 Visual word mining Spatial verification Automatic parameter tuning 	
4. Experimental results	5. Conclusion	6. Future work
• Overall	Research achievements	• Speed up
Robustness	Pros and Cons	Binary feature
 Time consumption 	Limitation	

4. Experimental results (1)

Standard dataset

- Oxford building 5k and 105k.
- Paris 6k.
- Total 55 queries on each dataset.
 - 11 landmarks and locations (topic).
 - 5 different views on each topic.

• Extra 1 million distractor dataset images

- MIR Flickr 1m to make Oxford building 1m and Paris 1m.
- Evaluation protocol
 - We use mean average precision (mAP) as an evaluation matric.
 - And ground truth files obtained from the dataset provider.

4. Experimental results (2)

Dataset examples

Paris landmarks

4. Experimental results (3)

- 1. Overall retrieval performance
- 2. Contributions comparison
- 3. Impact of Top-k retrieval images
- 4. Automatic parameter evaluation
- 5. Impact of varies quality query
- 6. Time consumption

Ref:

4.1 Overall retrieval performance

mAP for each method and dataset

4.2 Contributions comparison

- Notation of our proposed methods
 - QB = (QB + ASUP)
 - QB + SP = (QB + ASUP) + (SP + ADINT)

The performance comparison between our contributions

4.3 Impact of Top-k relevant images

Result:

- mAP vs. total number of retrieved images
- Higher top-k is good for spatial verification based methods.
 - Some relevant images can be found in lower ranked images.
 - AQE, QB + SP
- Higher top-k is bad for greedy methods.
 - Too many irrelevant images were added during aggregation.
 - QE, QB

Why QE/QB did not fail on Paris6k?

Because of the number of true positive images. **Paris6k** has avg.~163 (51-289) positive images. **Oxford** has avg.~51 (6-221) positive images.

4.4.1 Adaptive support (ASUP)

- Experiment for FIM based methods (run with QB + SP)
- Comparison of
 - mAP of a **fixed minimum support** of 5 to 95
 - and adaptive support (ASUP)

4.4.2 Adaptive inlier threshold (ADINT)

- Experiment for AQE, QB + SP
- Comparison on mAP of
 - Fixed inlier threshold (FINT) of 3, 5, 7, 9, 11 and
 - Adaptive inlier threshold (ADINT) or A

$\Delta(\min, \mathbf{A})$ is

how much **ADINT** better than a minimum of FINT.

 $\Delta(\max, \mathbf{A})$ is

how much **ADINT** better than a maximum of FINT.

Result:

- ADINT better than FINT in most cases of QB + SP.
- ADINT does not improve much on AQE, but at least it's automated!!

	Inlier	AQ	AQE (mAP %)		QB +	QB + SP (mAP %)			
	Threshold	Ox5k	Ox105k	Paris6k	Ox5k	Ox105k	Paris6k		
	3	88.11	79.69	80.44	74.39	50.95	89.66		
	5	88.60	80.72	80.13	85.47	68.44	89.32		
	7	87.87	81.86	79.19	92.48	89.31	87.76		
1	9	87.32	81.15	78.87	91.64	88.28	86.62		
	11	87.13	80.85	78.70	90.77	87.56	85.88		
	Α	87.88	81.85	78.70	93.49	90.36	88.96		
1	$\Delta(\min, \mathbf{A})$	0.75	2.16	0.00	19.10	39.41	3.08		
1	$\Delta(\max, \mathbf{A})$	-0.72	-0.01	-1.74	1.01	1.05	-0.70		

ADINT vs. FINT performance

4.5 Impact of a noisy query

Sample query image with noise @sigma = 2.0

4.5 Impact of a low resolution query

Sample query image with scale of 20% of original

4.6 Time consumption

- Overall time consumption
 - Fast with BoVW, and AQE
 - Slow with QB, and QB + SP

Overall time consumption

4.6 Time consumption - breakdown

- FIM-based methods are QB and QB + SP
- Result:
 - FIM is the most slowest part, why?

Ref:

4.6.1 Colossal pattern^[1]

	е	ics	DoMM		Q	B			QB-	+SP	
	Ŋ	jobj	DUVW		Precision(%)			\mathbf{T}	Precision(%)		
	Ľ	L#	mAP(%)	FIM (s)	mAP(%)	SD(±%)	mAP+(%)	FIM (S)	mAP(%)	SD(±%)	mAP+(%)
Ov 5k	Easy	40	81.26	0.075	85.51	21.02	4.25	0.166	<u>92.69</u>	14.25	11.43
UX 5 K	Hard	15	87.06	4.471	88.79	10.97	1.72	16.037	<u>95.64</u>	4.07	8.58
Ov 105h	Easy	40	73.94	0.011	73.99	29.94	0.05	0.066	<u>90.77</u>	15.95	16.83
OX 105K	Hard	15	80.24	0.109	80.13	13.81	-0.11	15.949	<u>89.28</u>	9.19	9.04
Dovia 61	Easy	25	71.09	0.922	86.53	9.23	15.44	0.363	86.17	9.39	15.08
Paris ok	Hard	30	80.69	21.475	89.74	15.37	9.05	19.030	91.28	12.28	10.59

QB + SP improve "Easy" query very well. And FIMT time usage on "Easy" is not much.

[1] F. Zhu, X. Yan, J. Han, P.S. Yu, and H. Cheng, "Mining colossal frequent patterns by core pattern fusion," ICDE, pp.706–715, 2007.

4.7 Result

BoVW Baseline

(a) Query

(b) BoVW results.

(c) AQE results.

(d) QB + SP results.

AQE More relevant to query ROI

QB + SP Relevant to each others

4.7 Result

BoVW Baseline

AQE More relevant to query ROI

QB + SP Relevant to each others

Overview

1. Introduction	2. Contributions list	3. Proposed methods
 Motivation Baseline problem 	 Visual word mining Spatial verification Automatic parameter tuning 	
4. Experimental results	5. Conclusion	6. Future work
Overall	Research achievements	• Speed up
Robustness	Pros and Cons	Binary feature
 Time consumption 	Limitation	

5. Conclusion

• We proposed

- "Query Bootstrapping (QB)" as visual mining technique for query expansion.
- The way to integrate "Spatial Verification (SP)" for such mining.
- The important parameters are automatically determined.
 - Adaptive support (ASUP) for FIM.
 - Adaptive inlier threshold (ADINT) for LO-RANSAC.

Achievements

- Our methods reach the highest performance on all datasets.
- Very high robustness on difficult cases of query quality are proved.

5.1 Benefits of using QB

- To help understand more on the target object and its context.
 - Context can also be learned.
 - Hidden visual words from other view angles can be learned.
- QB can be used to reject irrelevant visual words.
 - Object occlusions.
 - Misleading visual words.
 - Not useful visual words, not clearly related to the object.

5.1.1 Context discovery example (1)

• Query topic: defense_2

5.1.1 Context discovery example (2)

• Co-occurrences between top-1 and top-2

5.1.1 Context discovery example (3)

• Learned object contexts that help describing a target object.

5.1.1 Context discovery example (4)

• AQE result of "defense_2" on Paris 1M, AP = 27.04%

5.1.1 Context discovery example (5)

• **QB** result of "defense_2" on Paris 1M, AP = 71.35%

5.1.1 Context discovery example (6)

• AQE result of "moulinrouge_1" on Paris 1M, AP = 28.86%

5.1.1 Context discovery example (7)

• **QB** result of "moulinrouge_1" on Paris 1M, AP = 83.52%

5.1.2 Hidden visual words discovery (1)

• One query image may have limited visual contents

Query topic: eiffel_3

QB

5.1.2 Hidden visual words discovery (2)

- **QB** finds hidden visual words within the target object
 - Using relevance images.

AQE

5.1.2 Hidden visual words discovery (3)

• AQE Result (AP 23.67%)

• QB Result (AP 44.77%)

5.1.3 Irrelevant visual word identification (1)

• Misleading visual words in AQE matching.

5.1.3 Irrelevant visual word identification (2)

• QB can identify and reject those visual words.

5.1.3 Irrelevant visual word identification (3)

• Misleading visual words in AQE matching.

5.1.3 Irrelevant visual word identification (4)

• **QB** can identify and reject those visual words.

5.2 QB limitations

- Experiments with the other datasets
 - Mobile visual search
 - Instance Search
- Target dataset characteristics
- Weakness summarization

5.2.1 Experiments with the other datasets (1)

Stanford Mobile Visual Search

- Book covers
- Business cards
- CD covers
- DVD covers
- Landmarks
- Museum paintings
- Prints
- Video frames

5.2.1 Experiments with the other datasets (2)

Instance Search 2011, 2013

MAX Late fusion

5.2.1 Experiments with the other datasets (3)

Instance Search performance evaluation

29 27 25 23 21.82 21 19 18.41 17 15 BoVW QBSP Methods

Instance Search 2011

Instance Search 2013

5.2.1 Experiments with the other datasets (4)

• QB works well with some query e.g. "9028"

• BoVW – Result consisted with several big enough airplanes. (AP = 52.14%)

• QBSP – Mining pattern focused on an airplane (AP = 80.98%)

5.2.1 Experiments with the other datasets (5)

• QB works well with some query e.g. "9029"

• BoVW – This room (AP = **51.26**%)

• QBSP – This room (AP = 64.12%)

5.2.1 Experiments with the other datasets (6)

• QB works well with some query e.g. "9037"

BoVW – A back balloon (AP = 40.07%)

• QBSP – A back balloon helped by in front balloon (AP = 47.61%)

5.2.1 Experiments with the other datasets (7)

• QB do not works in the most cases e.g.

BoVW – A back balloon (AP = 18.72%)

• QBSP – A back balloon helped by in front balloon (AP = 3.85%)

5.2.2 Target dataset characteristics

- QB will work perfectly when
 - Original BoVW provides **good enough result**, then QB will boost its performance.
 - QB help improving the performance by using context, e.g. Finding an object that does not move, or finding a landmark.

5.2.3 Weakness

• QB will not work if

- Only one true positive is provided, so no more consistency can be discovered, e.g. MVS dataset.
- To search for a deformable object, e.g. Cloth, animal, texture less object, etc. (mostly are the characteristic of INS dataset)
- Results of QB are narrow
 - QB try to find thing that similar to each others out of the relevancies.

6. Future work

• This research can be extended

- Detect the *possibility of colossal pattern*.
- Let AQE handle the task of "Hard" query.
- Result to *reduce overall time* consumption taken by our QB.

6. Future work

- We also did experiments on binary feature.
 - ORB feature

6. Future work

ORB experiments on MVS dataset

Query Expansion for Visual Search using Data Mining Approach

Overview and Q/A

1. Introduction	2. Contributions list	3. Proposed methods
 Motivation Baseline problem 	 Visual word mining Spatial verification Automatic parameter tuning 	
4. Experimental results	5. Conclusion	6. Future work
 Overall Robustness Time consumption 	Research achievementsPros and Cons	 Speed up Binary feature