IEICE

TRANSACTIONS

on Information and Systems

VOL. E99-D NO. 2
FEBRUARY 2016

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

454

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

[PAPER

Query Bootstrapping: A Visual Mining Based Query Expansion

Siriwat KASAMWATTANAROTE ", Nonmember, Yasuke UCHIDA ™77 AMember,

SUMMARY Bag of Visual Words (BoVW) is an effective framework
for image retrieval. Query expansion (QE) further boosts retrieval perfor-
mance by refining a query with relevant visual words found from the ge-
ometric consistency check between the query image and highly ranked re-
trieved images obtained from the first round of retrieval. Since QE checks
the pairwise consistency between query and highly ranked images, its per-
formance may deteriorate when there are slight degradations in the query
image. We propose Query Bootstrapping as a variant of QE to circumvent
this problem by using the consistency of highly ranked images instead of
pairwise consistency. In so doing, we regard frequently co-occurring visual
words in highly ranked images as relevant visual words. Frequent itemset
mining (FIM) is used to find such visual words efficiently. However, the
FIM-based approach requires sensitive parameters to be fine-tuned, namely,
support (min/max-support) and the number of top ranked images (top-k).
Here, we propose an adaptive support algorithm that adaptively determines
both the minimum support and maximum support by referring to the first
round’s retrieval list. Selecting relevant images by using a geometric con-
sistency check further boosts retrieval performance by reducing outlier im-
ages from a mining process. An important parameter for the LO-RANSAC
algorithm that is used for the geometric consistency check, namely, inlier
threshold, is automatically determined by our algorithm. We further intro-
duce tf-fi-idf on top of tf-idf in order to take into account the frequency of
inliers (fi) in the retrieved images. We evaluated the performance of QB in
terms of mean average precision (mAP) on three benchmark datasets and
found that it gave significant performance boosts of 5.37%, 9.65%, and
8.52% over that of state-of-the-art QE on Oxford 5k, Oxford 105k, and
Paris 6k, respectively.

key words: image retrieval, instance search, query expansion, frequent
itemset mining, visual word mining, query bootstrapping, adaptive support,
adaptive inlier threshold

1. Introduction

The Bag of Visual Words (BoVW) framework has been
an effective means of object-based image retrieval since it
was first described in Video Google [1]. It represents im-
ages as histograms of local descriptors assigned as vocabu-
lary, namely, visual words. The existence of irrelevant vi-

Manuscript received May 19, 2015.
Manuscript revised September 21, 2015.
Manuscript publicized November 10, 2015.
"The author is with SOKENDAI (The Graduate University for
Advanced Studies), Hayama-shi, 240-0193 Japan.
"'The authors are with National Institute of Informatics, Tokyo,
101-8430 Japan.
T The author is with KDDI R&D Laboratories, Inc., Fujimino-
shi, 356-0003 Japan.
7177 The authors are with The University of Tokyo, Tokyo, 113—
8656 Japan.
a) E-mail: siriwat@nii.ac.jp
b) E-mail: ys-uchida@kddilabs.jp
¢) E-mail: satoh@nii.ac.jp
DOI: 10.1587/transinf.2015EDP7193

and Shin’ichi SATOH™-T1779), Senior Member

Fig.1 The illustration of a second-round query representing an object
mined from multiple relevant images by using our method.

sual words may degrade the performance of image retrieval
based on BoVW. Here, a word-weighting schemes such as
tf-idf inspired by the idea in text retrieval [2], have been pro-
posed in order to reduce the effect of irrelevant visual words.

Given an image query, the retrieval algorithm returns
a ranked list by checking the similarities between the query
image and the images in the database. After the first round
of image retrieval, query expansion (QE) is used to boost the
retrieval performance by selecting visual words that are ge-
ometrically consistent with the query image and the highly
ranked retrieved images in the ranked list. After that, a sec-
ond round of retrieval is performed. QE refines the query
with selected relevant visual words such that the ranked list
of the second round usually has a higher recall than that of
the first round. Salton et al.[3] devised a simple yet ef-
fective QE, called pseudo relevance feedback or blind rel-
evance feedback, which assumes that the top k of the re-
trieved ranked items are relevant and generate the query
by aggregating the features of these items. In object-based
image retrieval, the standard way is to use the average of
BoVW histograms of the top-k items as the refined query
for the next round retrieval.

In order to take advantage of geometric topology infor-
mation, Total Recall [4] adapts QE for object-based image
retrieval, then the method is widely known as average query
expansion (AQE). Given a ranked list of retrieved images
according to the query image with query region, AQE first
checks the geometric consistency between the query region
and each of the retrieved images and only selects relevant
visual words in verified images appearing in back-projected
regions to be put into the next-round query. The formulation
of the next-round query is done by averaging the BoVW his-
tograms of the original query and the verified images with

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

selected relevant visual words. This sort of refining with se-
lected relevant visual words achieves higher recall compared
with that of the first-round ranked list. However, since AQE
checks only the pairwise consistency between the query and
each of the highly ranked images, its performance may be
affected by slight degradations in the query image.

To solve this problem, we propose a new method called
Query Bootstrapping (QB for short). The key idea of this
variant of QE is to use the consistency among highly ranked
images, instead of using only the pairwise consistency be-
tween the query and each of the ranked images. Doing
so reduces the over-dependency on the query that affects
AQE, and thus QB may be more robust to the degradation
and/or variation in the query images. We regard frequently
co-occurring visual words in highly ranked images as rele-
vant. We use frequent itemset mining (FIM) to efficiently
find co-occurring visual words in highly ranked images, and
we also use LO-RANSAC [5] to check the geometric con-
sistency of the highly ranked images and remove those that
do not pass the check. FIM outputs frequent patterns, each
of which is composed of a set of visual words, that co-occur
frequently in the top-k highly ranked images. We then use
the visual words appearing in the frequent patterns to formu-
late the next-round query by averaging together BoVW his-
tograms of the original query and highly ranked (optionally
geometrically verified) images with only the visual words
in the frequent patterns. To do this, we propose tf-fi-idf as
an extension of #f-idf that takes into account frequent pat-
terns (fi). This method requires the parameters to be care-
fully designed, namely, the support as the fraction of co-
occurrences in the top-k highly ranked images, and the top k
as the number of highly ranked images to be fed to QB. Ex-
ample of second-round queries are illustrated in Fig. 1, with
back projecting image segments of highly ranked images
that contain visual words corresponding to frequent patterns
into the original query space.

There have been a number of previous attempts at us-
ing FIM for image retrieval; however, very few of them have
dealt with automatic optimization of such parameters. Here,
we devised an adaptive support selection algorithm that re-
turns both the minimum support minsup and maximum sup-
port maxsup in order to find the optimal faction of frequent
patterns out of the top-k images. Moreover, we also cre-
ated an algorithm that selects a suitable inlier threshold for
the LO-RANSAC geometric consistency verification, which
can be used to indirectly determine the value of k of the top-
k highly ranked images. We tested our approach on standard
benchmark datasets (Oxford 5k, Oxford 105k, and Paris 6k)
and found that it outperforms a BoVW baseline, yields a sig-
nificant performance improvement over AQE, and preserves
higher robustness to query degradations.

This paper is organized as follows. Section 2 gives a
brief review of related work, while Sect. 3 describes the no-
tation used. The details of our approach are explained in
Sect. 4, which consists of subsections on visual-based min-
ing (Sect.4.1), the adaptive support parameter (Sect.4.2),
integrating of the spatial verification (Sect. 4.3) and mining

455

results and its integration to BoVW (Sect. 4.4), and speed-
ing up the mining with the matrix transposition technique
(Sect.4.5). An evaluation of our method comparing it with
the state-of-the-art is presented in Sect.5. It shows the im-
pact of using the top-k parameters, compares fixed and auto-
parameter settings (Sect.5.3), assesses the algorithm’s ro-
bustness (Sect.5.4), and compares its execution time with
those of other methods (Sect. 5.5). The paper concludes in
Sect. 6.

2. Related Work

Query expansion (QE) is a well-known technique in the field
of text-based information retrieval. It reformulates a new
query from information found in highly ranked documents.
QE improves the total retrieval recall by adding terms that
were not in the original query but might be in the retrieved
documents. QE is regarded as a technique to improve the to-
tal retrieval recall by additional terms which were not found
in the original query but might be found in the retrieved doc-
uments. Since the BoVW method is inspired by text-based
information retrieval, it is quite natural for QE to be applied
to image retrieval as well. One of the simplest QE tech-
niques is called blind relevance feedback [3], which regards
highly ranked documents as relevant. The method feeds
these relevant documents back to the system in order to get
improved retrieval performance without an extended of user
interaction. This technique works well in text-based infor-
mation retrieval, since each term does not have a strict word
order. In contrast, an image has a meaning that depends
on the spatial locations of its visual words Hence, a sim-
ple application of QE to image retrieval may fail because
irrelevant images may be included among the highly ranked
results and also because visual words in background regions
may be included in the relevant images.

To circumvent the above problem, [4] takes geometric
information into account in QE; namely, they make a “spa-
tial” verification (using RANSAC or the like) between the
query image (or query region) and each of the database im-
ages. In this verification, geometrically irrelevant images
are rejected, and relevant images are back-projected onto
the query region in order to reject irrelevant visual words
appearing in the retrieved images. This method lies at the
heart of recent state-of-the-art visual QE methods. It im-
poses pairwise spatial constraints on the query image and
each of the database images, but in so doing it may narrow
the range of the expanded query or miss information that is
in the relevant images but not in the query (e.g., it can miss
objects with occlusions or small objects with low granular-
ity or noise).

Agrawal et al.[6] proposed frequent itemset mining
(FIM) as a fast and principled method in data mining. FIM
tries to find regularities, for example, in data on the shop-
ping behavior of supermarket customers or by finding sets
of products that are frequently bought together. Well-known
FIM algorithms include FP-growth [7], which achieves log-
arithmic computational complexity against the number of

456
Table 1 (left) Input simple transactions of top-five images. (right) Cor-
responding output patterns found with minsup of 10% (see Sect. 4.1).
Pattern support
{in} 60%
Img. I Trans. f {i3} 40%
I 1 = i1, iz, ia, ig} {is} 40%
05) r =iz, is, ig} {i1, ia} 40%
I 13 = {iz, 3, o} {i3, i3} 20%
Iy ty = i1, iz, ia, i7} {iv, i, i7} 20%
Is ts = {ip, i3, ig} {iz, i3, io} 20%
{i2, i5, ig} 20%
{i1, 12,14, 6} 20%

transactions but requires exponential memory complexity,
and LCM [8], which runs in linear computational complex-
ity along with linear memory complexity. FIM tools are per-
vasively used for finding patterns in transactions. However,
it is not necessary to find all item sets. FIM requires a pa-
rameter, namely the minsup threshold, for ensuring only the
item sets that have a relatively larger fraction of transactions
are output. In addition, [9] proposed an optional maximum
constraint maxsup for judging multiple items with different
criteria.

FIM has begun to be applied to problems involving im-
ages. Here, visual word mining attempts to find meaningful
co-occurring patterns by taking advantage of the power of
FIM especially in the context of QE, and it has been used
in video mining [10], visual phrase mining [11], mining of
multiple queries [12], and mining for re-ranking and clas-
sification [13]. FIM is also reported to be able to find un-
ambiguous spatially visual meanings [11]. However, FIM
requires fine tuning of a sensitive parameter, namely, min-
sup. Most of the aforementioned methods heuristically as-
sign a fixed minsup value or predefined number of patterns
depending on the dataset. In contrast, we present an auto-
mated algorithm for tuning minsup and maxsup values on-
the-fly in a way that depends on each individual query (see
Sect. 4.2).

3. Preliminaries

This section explains the notation used in the paper and the
previous approaches, namely, BoVW, QE, AQE, and FIM.

Object-based image retrieval

The main purpose of object-based image retrieval is to
find the most similar objects to a given query image Q
in a database D consisting of M images, where D =
{I,I5,...,1y}. In some cases, the query is a region of in-
terest (ROI) in an image.

If a query is given without any specific bounding box
around the intended object, the image search will interpret
the whole image as being the query and will retrieve images
with the globally highest similarities to it from the database.
Here, Eq. 1 describes the result of such a simple retrieval
scheme R for a (normally ranked) list of images.

R = {I, € D|I}, contains object appeared on Q} (1)

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

The goal of object-based image retrieval, is not to iden-
tify the most similar image, but rather to find images from
the database collection that contain the same or visually sim-
ilar objects, as in the Trecvid Instance Search task [14].

Baseline method: BoVW

We chose BoVW as the baseline for comparison in this
study. BoVW extracts local features from each image (i.e.,
from the query and the images in the database). In partic-
ular, we used a Hessian Affine keypoint detector [15] and
RootSIFT [16], [17] to obtain on average 1,000 to 3,000 de-
scriptors per image, depending on the content of the image.
We used AKM[18] to generate a large visual vocabulary
(K = 1 million) and ANN [19] to quantize the local features
for the sake of speed. A k-dimensional vector was obtained
for each image. Here, we denote the vector of the query (op-
tionally with the ROI) as Q and the vector of the database
image as I;. Moreover, the vector components can option-
ally be weighted by #f-idf. We used the following similarity
between Q and I:

1
9 H @)
1

mQ,1) = 1 — || —=— —
sim(@.1) ”IIQIh i,

where |||, denotes the L'-norm. This similarity was cal-
culated from all matched non-zero words, or for only the
matches inside the ROL, if provided. The top-k retrieved re-
sults R were those with the k highest similarities.

Query expansion (QE)

Given an initial top-k ranked list R, QE assumes that (most
of) the items in the list are relevant and generates a next-
round query by averaging the BoVW histograms of the im-
ages retrieved in the first round.:

k

Q= @ (3)
where R;, denotes the BoVW histogram of the b-th image
in R. Some of the retrieved images may be irrelevant to
the query. To circumvent this problem, AQE [4] checks the
geometric consistency of each of the returned images with
the query. Here, let us assume that " images successfully
pass the geometric consistency check (K’ < k) and R}, is the
BoVW histogram of the b-th image. The next-round query
of AQE is computed as:

:Q+Z§:1Rb
K+1

An algorithm like RANSAC [5] is typically used for the
geometric consistency check. The inlier threshold parame-
ter (th) is used to control the consistency, which thresholds
the number of point pairs between two images (the query
and one of the returned images) satisfying the estimated
geometric transformation (scale, shift, affine, homography,
etc.). Verified images ensure a higher quality second-round
query Q”. In obtaining the average (Eq. 3) for the next round

Q" “4)

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

B2T | Adaptive Support

457

Support value

VWs patterns

. i Second-round Query
Fifidy)

OB Tracer

< =

ZR=

- E £ .
% Verified
0 B2T
First-round Query Search Rank S [_% Rank FIM
(f-idf) List 1 List 1
Verified Top-k (< k)
Selected Top-k Spatial Verification

BoVW Aggregator

B2T: A conversion from a BoVW to a transaction database.

Fig.2 Framework of Query Bootstrapping (QB) with an optional spatial verification module (SP).

query, the method takes the union of features of the origi-
nal query combined with regions in returned images back-
projected into the query region by the estimated transforma-
tion.

Frequent item sets mining (FIM)

FIM is aiming at finding regularities in transactions. Well-
known application of FIM is market basket analysis: given
large number of lists of items bought by customers (a list
is called a transaction), FIM finds multiple sets of items
(called frequent patterns) bought together by many cus-

tomers. Here, let us denote that T = {#y,...,¢,} is a set of
transactions, and each transaction ¢ = {iy,...,i,};i € Zisa
set of items. A set of patterns is defined as P = {py, ..., Py}

where each pattern p is also a set of items. Each pattern has
a corresponding support:

sup(p. 1) == R <1
s =sup(p,T))
P =FIM(T,s)

representing the fraction of transactions which contains the
pattern p out of all transactions. The parameter minsup en-
sures FIM to output only patterns having larger supports
than a given value. When a pattern to be output contains a
large number of items, FIM may generate an extremely large
number of patterns because all elements of the power set of
the pattern are by definition to be output. This problem is
called the colossal pattern problem [20], and it may degrade
the performance of FIM. Simple outputs of FIM are shown
in Table 1.

4. Query Bootstrapping

Figure 2 is an overview of our QB and QB + SP (QB com-
bined with optional spatial verification) framework. From
left to right, it works as follows:

1. Baseline BoVW
The input query image is processed using the standard
BoVW-based image retrieval to obtain the first-round
result (Ranked List 1).

2. Spatial verification (SP, optional)
In this optional step, LO-RANSAC verifies the consis-
tency of ranked list (returning a Verified Ranked List
1). Here, the spatial topology of the local features in

each image in the Ranked List 1 is compared with that
of the query image, and if the topologies are deter-
mined to be similar, the image is added to the verified
list. The key parameter of LO-RANSAC, namely, the
inlier threshold, is automatically determined.
3. Query Bootstrapping (QB)

The list (either verified or not verified) is fed to the FIM
module in order to find frequently co-occurring visual
words. The parameters of FIM, namely, minsup and
maxsup, are automatically determined. The result is
used to determine #f-fi-idf weights, and the query vec-
tor for the second round is generated. Finally, second-
round retrieval is executed with the generated second-
round query using a standard BoVW framework.

4.1 Mining Visual Transactions

In order to apply FIM to a ranked list of images, we convert
the list into a set of transactions. Each image in the list is re-
garded as a transaction, the quantized visual words as items,
and the set of images in the list as a set of transactions (we
call this conversion as the B2T procedure). Given such a set
of transactions, FIM outputs frequent patterns correspond-
ing to frequently co-occurring visual words.

4.2 Adaptive support Parameter

FIM generates patterns under specific constraints on the
support. On the other hand, as [9] suggested, the patterns
can include mixtures of different patterns, which may corre-
spond to target objects, such as buildings, as well as back-
ground objects, such as trees. If we seek too high a support
value, we may find patterns which co-occur very frequently
in the top-k images, but may miss patterns (corresponding
to target objects) which occur only moderately frequently.
If we set too low a constraint for the support, FIM may gen-
erate too many patterns including background noise with the
target objects.

We can consider the number of patterns with intervals
for support values. We assume that the number of patterns in
excess of the support value has a unimodal distribution be-
cause the target object for each query is unique. The Fig.3
shows examples that supports this assumption. Accordingly,
we can determine minsup and maxsup to be the support val-
ues corresponding to the maximum number of patterns.

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

458
uery: “all_souls 17 uery: “all souls 2” uery: “all_souls 4” uery: “christ church 2”
ry _ _ Ty ! _ ry _ _ Ty - _
. 1000 : 10000 . 400000 g 20000
£ 500 2 5000 £ 200000 £ 10000
(=4 (=% o {=%
I+ 0 I+ 0 I+ 0 e 0
0 50 100 0 50 100 0 50 100 0 50 100
support support support support
Fig.3 Plot of the number of patterns versus support reflecting the monotonicity property of the FIM
principle for four different queries. The optimal support parameter is at the maximum number of
patterns.
FIM restricts the output patterns to those having sup- % 82 é)pt}iers:
port values between minsup and maxsup. FIM takes two pa- § TR
rameters, namely, minsup and maxsup, which restrict output g @
patterns having support value between them. In addition, -
FIM has two operation modes. In one mode, it finds closed 1000
frequent itemsets which include all patterns greater than or Inlier count
equal Fo minsup. Ip the other mod(?, 1't finds 'max1mal fre- 1000 3 $4 outliers®
quent itemsets, which are those of its immediate supersets 2 1 16 inliers®
are frequent. The closed frequent itemsets mode tends to be 5 50 ADINT=5 (b)
. . . (5] i
slow especially when the number of patterns is large, while = 0 “ T .
the maximal frequent itemsets mode runs very fast. To de- | ‘ 10 100 1000
termine the optimal minsup and maxsup, we scan pairs of .
. . . . Inlier count
possible minsup and maxsup values with a fixed interval be- 100 ‘ A
tween them and inspect the number of patterns using FIM in) Peak=5¢ San e
maximal frequent itemsets mode. The minsup and maxsup g 50 i ©
pair yielding the maximum number of patterns are deter- 2 ADINT =76
mined to be optimal. The pseudo code of the algorithm is as 0 * 0-.-0-00-® ®
follows: 1 10 100 1000 10000
Inlier count
-, 100 Laree iump defected S8(93) outliers(fixed)®
Algorithm 1 Adaptive Support Tuning Algorithm (ASUP) g Peak =5 arge jump detecte ﬁz()inliers§ﬁxedg.
: /—)%
Require: 7 « B2T(R) 2 50 "ADINT =6 i (@
i g ‘ ADINT = 148 (fixed)
: procedure SUPPORT TRACER 1 ° &—J 3
b_sup « 0, n_sup « 100 - 0 p-o-mo o
: loop: b_sup < n-sup 1 10 100 1000 10000

1

2

3

4 s < b_sup ;(s as minsup)

5: S < 5+ 5 (S as maxsup)

6: P_count[s] < ||[FIM(T, s, S)||
7: b_sup « b_sup +5

1: procedure OPTIMAL SUPPORT SELECTION
2 opt_s « P_county,,.idx X 5

3 optS «—opt_s+5

4: return opt_s,opt_S

Finally FIM is run in closed frequent itemsets mode
with the optimal minsup and maxsup in order to generate
actual patterns. Note that using minsup and maxsup helps
to improve the quality of the generated patterns on an exact
frequent object and hence contributes to the overall retrieval
performance, and the closed frequent itemsets mode is faster
in this case since there is no need to discover unnecessary
patterns outside the min/max support boundary.

This step assumes that the first round retrieval results
are dominated by relevant images containing target objects.
Unfortunately, as Fig. 5 implies, this is not always the case.
In other words, FIM and the parameter determination algo-
rithm explained here may not always work so well. To cope

Inlier count

Fig.4 The actual cases of how ADINT finds an inlier threshold. The
dots represents the frequency of each inlier count (shown in log scale). The
ADINT ratio was set to 0.9 (red arc). (a) Blue ellipses show the group
of outlier images (left) and inlier images (right). (b,c) General cases. (d)
Special case when ADINT finds a threshold at the boundary of the outlier
group (red-circle dot), which is then fixed to the inlier group.

with this problem, we can optionally employ spatial verifi-
cation.

4.3 Improving QB with LO-RANSAC

We use LO-RANSAC for the spatial verification. LO-
RANSAC generates a verified ranked list from a query im-
age and the images in the ranked list. It finds the maximum
number of point pairs between given two images that are ge-
ometrically consistent in some way (we use Homography).
Such point pairs are called inliers. Images having more in-
liers than a threshold are called verified images. Too tight of
a threshold may generate very few (or no) verified images,
while too loose a threshold is equivalent to no verification.

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

459

i s

(b) Top 10 relevant images retrieved by QB.

Fig.5 Example of QB failure when images retrieved in the first round were dominated by another
object (a tree) rather than the target query (a building). Without a spatial verification (SP) process, QB

produces a result closer to the dominated one.

20
= 15
]
3
51 AL
c
=5 YV
0
—NI N = NI NN — 0D — 00
—re = = AN AN AN AN NN NN NN < <t

f_
E
>

Rank order

Fig.6 The blue line shows the total number of inliers found in the top 100 images of the initial rank
on the sample query with a baseline AP of 30.14%. The gray bar shows the true positive images appear-
ing in the ranked list, whereas the orange bar shows images selected by our adaptive inlier threshold
(ADINT) seen in a red line that yielded a final AP of 82.07%.

Adaptive Inlier Threshold

We assume that images having target objects tend to have
large numbers of inliers, while images without target ob-
jects tend to have few inliers. Here, we propose an adaptive
inlier threshold algorithm, namely, ADINT that adaptively
determines inlier threshold to filter relevant images. First,
we use LO-RANSAC to determine which images in the top-
k retrieved images are under a certain inlier count thresh-
old. Then we construct a frequency histogram (the number
of images) of the inlier count to be processed with the rest
of the ADINT algorithm. The example of histograms are
shown in Fig. 4 (a)—(b). Generally, images with high inlier
counts tend to be the correct matches (see the right ellipse
in Fig.4 (a)), while images with low inlier counts tend to
be outliers (see the left ellipse in Fig. 4 (a)). More specifi-
cally, outlier images are usually at a peak on the left side of
the distribution, including its neighborhoods and the images
that have lower inlier counts than the peak point. Based on
this observation, our ADINT finds a splitting point for inlier
counts as follow:

In order to determine the inlier threshold between in-
lier and outlier images, the algorithm 2 firstly finds a point
in a histogram where the most images are belonging to.
This point will be a center point for the following sweeping
mechanism. The algorithm determines the inlier threshold
by sweeping clockwise from the right-most inlier count that

Algorithm 2 Adaptive Inlier Threshold (ADINT)

Require: in/s (as inlier count distribution)
1: procedure ADINT
2: center «— find_max(inls)

3: adint,qip < predefined

4: inl « inls[center * adint,q;,)

5: loop: center.idx < inl.idx

6: a « center — inl

7: b « |center.idx — inl.idx|

8: ¢« Va2 +b?

9: if center * adint,q;, < c then

10: adint = inl

11: if find_large_jump_ahead(inls, adint) # null then
12: adint = find_large_jump_ahead(inls, adint)
13: stop;

14: inl « inls(inl.idx — 1]
15: return adint

can be reached by the radius of 0.9 times the frequency of
the center point. The sweeping process will be done at the
point where the radius cuts the histogram, or until it reaches
the inlier count of the center point. The ratio is introduced,
namely, ADINT ratio, with a typical value of 0.9 for con-
trolling the radius.

ADINT works well in most cases. However, when
there is only few correct matches in the retrieved images,
we might easily identify inlier counts into two distinct group
(see black and blue points in Fig. 4 (¢) and (d)). On the other
hands, setting an ADINT ratio to 0.9 might not be enough,

460

and may fail to filter out some irrelevant images as seen in
Fig.4(d). Therefore, we check whether a threshold was
found near a boundary of an outlier groups, and if so, the
threshold will be fixed to a boundary of an inlier group (see
algorithm 2 at line 10 and 11). Figure 6 compares the auto-
selected inlier images (orange bars) with the ground truth
(gray bars).

4.4 Integrating QB into the BoVW Framework

Up to now, in order to incorporate the set of patterns ob-
tained by FIM, we extend the #f-idf weight for each quan-
tized visual word by taking into account the frequent item
(i) that processed by the prior steps as a representative form
of the occurrences of visual words. In this work, fi is 1 if the
corresponding visual word appears in any pattern in the set
of patterns, and is O if the corresponding visual word does
not appear in the set. The final weight, #f-fi-idf, is easily
defined as follows:

iffi-idf = fi x if-idf ©)

Note that by setting fi for all visual words to 1, we obtain the
standard query expansion.

4.5 Speed Up Mining Process with Transaction Transpo-
sition

Given transactions with m items, FIM normally discovers
shared patterns from 2™ possible subsets of combinations of
items in a set of transactions. As a toy example, suppose we
have three code words a, b, and c; the total number of possi-
ble patterns will be 2> = 8, and the complete set of patterns
will be P € {{}, {a}, {b}, {c}, {a, b}, {a, c},{D, c},{a, b, c}}.

Since we use 1 million codewords in the BoVW frame-
work, the resultant BoVW vectors are very high dimension,
and their sparsity is also quite high. For instance, let us
assume that an image has been encoded into a BoVW his-
togram with 1000 non-zero words. Suppose further that we
have ten images in a ranked list that have 200 words in com-
mon while each of the other 800 words appear only once in
them. In total, there would be 200 + (800 x 10), or 8200
distinct words to be handled by FIM. Therefore, m = 8200
yields 28200 = 2.79 x 10?46® possible sets, which make the
search space intractably large for FIM.

Although the number of items can be large (in our case
several thousands), the number of transactions is relatively
small (a few tens to hundreds). A number of pattern discov-
ery studies [21]-[23] have tried to reduce a dimension of m,
by using a Galois connection to do mapping on a completed
lattice from a transposed matrix side back to the original un-
transposed matrix side’.

Transposing a transaction database, which contains m

"For details on how to transpose a visual transaction and
how to map back mining results by using Galois connections,
we encourage readers to access the URL: http://www.satoh-
lab.nii.ac.jp/%7estylix/papers/siriwat%Sfqbtranspose.pdf

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

Items

[T 160.00%
40.00%
40.00%
FIM 40.00%

20.00%
20.00%
20.00%
Items 20.00%

Patterns

g 20.00%
§ (b) Patterns: which item sets
g shared among transaction
= Transactions Transactions
g g 11.11%
(a) Original top-k transactions L 2 11.11%
FIM & 11.11%
Transaction 22.22%

22.22%

33.33%

33.33%

33.33%

\ 44.44%

(c) Transposed top-k (d) Patterns: which transaction
transactions sets contain similar items

transposition

Fig.7 (a) Original transaction database (7). (c) Transposed transaction
database (TT) for speeding up FIM (b), (d) Patterns (P and P’) discovered
by using FIM on a normal database and a transposed database.

Table 2 Average time usage per query when using FIM on a database
and on matrix transposition of a database (FIMT).

Time (second)
Ox 5k | Ox 105k Paris 6k
FIM 7.857 0.274 Upper limit
FIMT 1.274 0.038 12.132

items with n transactions where 2™ >> 2" enables FIM
to operate on a much smaller space of patterns. This means
FIM can work much faster on the transpose than on the orig-
inal transactions (see Fig.7). Table 2 compares time used
per query of FIM on a transaction database and its trans-
pose.

5. Evaluation and Comparison

We compared BoVW ([24]-[26]), average query expansion
(AQE) [4], query bootstrapping (QB), and QB with spatial
verification (QB + SP). To seek for fair evaluation, we used
three state-of-the-art datasets and their ground truth labels,
namely, Oxford 5k, Oxford 105k, and Paris 6k [18], [27],
which were largely used in the object based image retrieval
works.

The Oxford Buildings 5k dataset consists of 5062
high-resolution images that were crawled from Flickr by us-
ing queries for famous Oxford landmarks, such as “Oxford
Christ Church” and “Oxford Radcliffe Camera”.

The Oxford Buildings 105k dataset is an extension
of Oxford 5k that uses the distractor images of the Flickr
100k dataset, which consists of 100071 images collected by
searching for popular Flickr tags.

The Paris 6k dataset consists of 6412 high-resolution
images collected from Flickr by searching for particular
Paris landmarks, such as “Paris Moulin Rouge” and “Paris
Arc de Triomphe”.

The Ground truth labels is provided differently on Ox-
ford and Paris dataset. Each of which are 11 different land-

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

Z 60 §\ %

E .

SN
ROk (6] 550
< AQE 88.12
=QB 86.41
2 QB+ SP 93.49

75.66
72.50
80.71
75.67
90.36

461

% =BoVW
= I AQE [28]
= < AQE
% = QB
— Paris 6k-) 2 QB +SP

76.33

72.00

80.44

88.28

88.96

Comparison of our proposed methods (OB and OB + SP) with BoVW, AQE, and AQE [28] on

Oxford 5k, Oxford 105k, and Paris 6k. The bars show QB and QB + SP significantly outperformed the
other methods. Also, the 1% and the 3™ quartile bars show our methods also performed lower variances

among queries than the others.

marks, each consisted of 5 possible queries. This gives a set
of 55 queries with four possible labels as follows:

1.
2.
3.

Good — a clear picture of the object/building.

OK — more than 25% of the object is clearly visible.
Junk — less than 25% of the object is visible, or there
is a very high level of occlusion or distortion.

4. Bad — the object is not present.

In term of evaluation, we used mean average precision
(mAP) as the evaluation metric. In addition, we regard im-
ages with Good and OK labels as relevant, images with Bad
label as irrelevant, and we disregard images with Junk label
in the calculation.

We used 100 million randomly sampled local features
to train a codebook of 1 million code words. In particu-
lar, we used an approximate nearest neighbor search (Fast-
Cluster [18]) with 50 iterations. The visual word assignment
was done using fast library for approximate nearest neigh-
bor (FLANN [19]) with a hard assignment, 512 checks on
maximum leafs, and the KDTree index. For the spatial ver-
ification, we used the default RANSAC parameters, while
we increased the random samples from 1000 to 3000 in the
hope of obtaining a small accuracy improvement. More-
over, as indicated above, we enabled the local optimization
option, i.e., LO-RANSAC.

We conducted all experiments on a computer running
Linux RHEL 6.3 with an Intel Xeon E7-4870 @2.4 GHz
having 40 virtual CPUs and 512 GBs of memory. The
core retrieval module was written in the C++11 standard
and compiled with the optimization -O3 flag using cross-
compiled GCC 4.8.1. We evaluated the time consumption
of FIM and similarity scoring based on a single CPU. Since
we parallelized RANSAC, the times reported in this paper
are for all of the available CPUs.

5.1 Opverall Evaluation

Figure 8 shows the performance of BoVW, AQE, AQE [28],
QB, and QB + SP. The evaluation was done based on the
same parameter configuration for all approaches. However,
for the QE based approaches (AQE, AQE [28], QB, and QB
+ SP), setting various top-k values will directly effect to the
final performance. We ran these experiments using the pa-
rameters that achieved the best performance for each of the
methods. We used the top-100 images for AQE, QB + SP
on all datasets, the top-100 for QB on the Paris dataset and
the top-25 for QB on the Oxford datasets as reported in the
Sect. 5.2. However, for the AQE [28], due to a speed issue,
top-10 images is only the maximum for them.

It is clear from this figure that QB + SP significantly
outperformed the other methods with the lower variances
among queries. Figure 9 shows samples of the rank lists
retrieved with the BoVW, AQE, and QB + SP.

5.2 Impact of the Number of Relevant Images to Retrieval
Performance

One of the parameters of query expansion based methods
(e.g. AQE, QB, and QB + SP) is the number of relevant im-
ages k from the first-round retrieval. We varied k (e.g., 25,
50, 75, and 100) to see how it affected the retrieval perfor-
mance.

As Fig. 10 shows, the spatial verification based meth-
ods (AQE and QB + SP) received a positive impact for a
larger number of images, while those without spatial veri-
fication (QB) suffered when too many images were added.
A possible reason for the non-spatial verification methods
doing less well is that a larger number of images may have
more irrelevant images; spatial verification eliminates such

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

462
(d) QB + SP results.
Fig.9 Top 20 relevant images showing how the three main approaches differ in effect. (a) Query
image with ROI (b) BoVW result (c) AQE got better matches to ROI than BoVW (d) QB + SP reflects
the frequent objects from the initial rank.
100 100 100
95 — a 95 95
o 90 90 _ 90
E 20 == < o % 20 _—
= 80 = = 80 \ 80
@ 75 -~ = 75 < & 75
=
= 70 ° 70 ~ z 70
% 65 < 65 g 65 AQE
o 60 5 60 > 60 — QB
55 55 ~ 55
50 50 50 ——QB+SP
25 50 75 100 25 50 75 100 25 50 75 100
AQE | 8773 88.01 87.99 | 88.11 AQE | 8050 | 8092 | 80.13 79.93 AQE | 7816 | 7931 | 79.89 | 80.38
— -QB 86.41 8320 | 79.12 | 74.23 — -QB 7855 | 66.62 | 5832 | 50.87 — -QB 83.66 | 87.13 | 8828 | 89.62
QB+SP| 90.54 | 9271 93.81 93.43 ——QB+SP, 8577 | 8898 | 89.47 | 9095 QB+SP| 83.14 | 86.89 | 8847 & 89.67
top-k top-k top-k

Fig.10 Impact of different top-k values on the retrieval performance of the query expansion based

method.

irrelevant images. In addition, QB + SP takes full advantage
of the more numerous relevant images because it can uti-
lize the consistency among them. In contrast, AQE did not
enjoy this benefit because it imposes pairwise consistency
between the query and each of the images in the ranked list.
Figure 10 also shows that increasing the number of im-
ages had a negative impact on the recall of QB with Oxford
Sk and 105k, but a positive impact with Paris 6k. This differ-
ence is due to the different numbers of relevant images per
query. The number of true positive images per query of the
Paris 6k dataset is on average 163 (minimum 51 and maxi-
mum 289). On the other hand, Oxford 5k and 105k datasets
contains on average only 51 true positive images per query
(minimum 6 and maximum 221). This is why QB did not
degrade the recall on Paris 6k even with up to 100 images.

5.3 Automatic Parameters and Relative Improvement

We evaluated the performance of the automatic parameter
tuning algorithms including support, and inlier threshold.

Adaptive support

Here, we compared the performance in terms of mAP of QB
+ SP on Oxford 5k for two different settings, one using a
fixed minsup for all queries, and another using the adaptive
support algorithm to adaptively select minsup and maxsup
for each query. Figure 11 shows the results. Minsup had a
strong impact on the final performance of Oxford 5k, and
the best fixed minsup was around 20-30 (blue line). How-
ever, the adaptive support algorithm performed better than

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

Fixed vs. Auto support [Oxford 5k]

1.00
e e
Lo |0 LD LD i w
<0.70 | J [
0.60 | 1
0.50 ‘
0.40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Support value

Fixed Support ——Auto Support

Fig.11 Retrieval performance of QB + SP on Oxford 5k dataset compar-
ing the impact of a fixed support (blue line) and adaptive support (red line).
The 1% and the 3" quartile bar show that the adaptive method achieves
lower variances among queries.

Table3 Comparison of fixed inlier threshold and adaptive inlier thresh-
old (ADINT, A). QB + SP performed the best with ADINT, and ADINT
provided a fair performance for AQE.

Inlier AQE (mAP %)

QB + SP (mAP %)

Threshold | Ox5k [Ox105k| Paris6k| Ox5k [Ox105k| Paris6k
3 88.11 79.69 | 80.44 | 74.39 | 50.95 | 89.66
5 88.60 | 80.72 | 80.13 | 85.47 | 68.44 | 89.32
7 87.87 | 81.86 | 79.19 | 92.48 89.31 87.76
9 87.32 | 81.15 | 78.87 | 91.64 | 88.28 | 86.62
11 87.13 | 80.85 [78.70 | 90.77 | 87.56 | 85.88
A 87.88 | 81.85 | 78.70 | 93.49 | 90.36 | 88.96

A(min, A) | 0.75 2.16 0.00 19.10 | 39.41 3.08

A(max, A) | -0.72 -0.01 -1.74 1.01 1.05 -0.70

the non-adaptive one, with lower variances among queries
(red line).

Adaptive inlier threshold

We compared the effect of the adaptive inlier threshold algo-
rithm (ADINT) with that of a fixed inlier threshold (FINT).
For fairness, we compared only QB + SP and AQE. The re-
sults are shown in Table 3. AQE had less impact on the var-
ious inlier thresholds, while QB + SP had a strong impact.
ADINT significantly improved the performance of QB + SP,
while its contribution to AQE was minor.

5.4 TImpact of Query Quality on Retrieval Robustness

The following experiments assessed the impact of degraded
queries.

Query with noise

We added the Gaussian noise with different standard devia-
tion values (oo = 1.0, 1.5, and 2.0) to the original query. The
results, reported in Fig. 12, show that QB + SP gave the best
results for all three datasets and showed good robustness to
noise levels. However, QB became inaccurate when very
hard noise appeared in an image and put many more irrele-
vant images in the initial ranked lists. AQE and BoVW were
affected in the similar way.

Query with lower resolution

We did another experiment on query quality that assumed

463

Table 4 Average time consumption per query (without feature extrac-
tion) of BoVW, AQE, QB, and QB + SP.
Time (second)
BoVW | AQE QB QB + SP
Ox5k 0.059 | 0.305 1.374 5.082
Ox105k | 0.793 1.465 1.042 5.557
Paris6k 0.667 0.361 | 12.275 10.981

Table 5
QB + SP.

Average time consumed per query for each module of QB and

Time (second)
QB QB + SP
FIMT Sim SP FIMT Sim
Ox 5k 1.274 0.041 | 0.224 | 4.495 0.305
Ox 105k | 0.038 0.211 | 0.243 4.398 0.124
Paris 6k | 12.132 | 0.040 | 0.229 | 10.545 | 0.105

the query image was from a low-resolution camera or was a
thumbnail image that would be used, for example, to speed
up data transfers through a high latency network. We re-
sized the query on different scales (20%, 40%, 60%, and
80%). Figure 13 shows that QB + SP performed the best
until 40% whereas other methods experienced large perfor-
mance drops.

5.5 Time Consumption

Table 4 lists the average time consumption per query. Note
that we excluded feature extraction from the evaluation
since it had no effect on any method.

QB + SP was the slowest, followed by QB, AQE,
and BoVW. We did a time breakdown on QB and QB +
SP, namely, on the SP (spatial verification) module, FIMT
(frequent itemset mining process with matrix transposition)
module, and Sim (similarity calculation) module. It is clear
from Table 5 that the most time-consuming module was FIM
process. On the other hand, FIM tends to be slow when the
number of discovered patterns is huge. Assuming that if
a query is “easy” in terms of retrieval performance (namely,
BoVW can achieve very high performance and thus the con-
tribution of query expansion is limited), many visual words
may be found in common among the query and relevant im-
ages, and thus, FIM may produce many patterns. Moreover,
if we assume that a “hard” query (BoVW performs poorly
and thus there is room for the improvement by query expan-
sion), relevant images may have fewer visual words in com-
mon, FIM may produce fewer patterns. To see whether this
assumption is valid, we checked the relationship between
retrieval performance and the total number of patterns. Fig-
ure 14 plots mAP values for each query versus the number
of patterns for all methods.

For a query on which BoVW obtained a low mAP, FIM
discovers fewer patterns and thus is fast. On the other hand,
for a query on which BoVW obtained a high mAP, FIM
tends to produce more patterns. Accordingly, we catego-
rized queries into two types using the number of patterns,
which are easy for FIM (#patterns < 100k) and hard for FIM
(#patterns > 100k).

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

464
100 100 100
A, 90 & 90 N 90
E 80 £ 80 e 80
= 70 = 70 o 70
h<) 60 b 60 ° 60
“E 50 8 50 Es 50 e Baseline
S 40 5 40 40 AQE
30 30 30
wlo 1.0 1.5 2.0 wlo 1.0 15 2.0 wlo 1.0 15 2.0 — QB
------ Baseline| 82.84 | 80.17 = 7332 | 6228 -eo--Baseline| 7566 | 7125 | 6245 | 4936 ----Baseline| 7633 | 72.82 | 6621 | 5772 | ——QB+SP
AQE 88.12 | 8824 | 8643 | 82.02 AQE 80.71 | 8092 | 7625 | 67.92 AQE 8044 | 77.14 | 7577 | 74.05
— -QB 86.41 7994 | 6629 | 5118 — -QB 7567 | 6349 | 4602 | 3518 — -QB 88.28 | 8501 | 83.77 7770
——QB+SP| 9349 | 9215 = 90.71 89.03 ——QB+SP| 9036 | 8848 | 8460 = 7592 ——QB+SP 8896 | 87.11 | 8661 | 84.64
Gaussian sigma (o) Gaussian sigma (o) Gaussian sigma ()
Fig.12 Retrieval performance for synthetic noisy query.
100 100 100
95 n. 95 95
> 90 < 90 o 90
E 85 g 85 < 85
= 80 & 80 80
@ 75 = 75 & 75
2 70) 70 2 70
< 65 & 65 g 65— e Bascline
8 60 % 60 60
55 o 55 55 AQE
50 50 50 — QB
w/o 80 60 40 20 wo | 80 | 60 | 40 | 20
------ Bascline| 82.84 | 8229 | 8225 | 79.89 | 66.47 -+~ Baseline| 75.66 75.85 7545 72.04 | 53.07 <o+ Baseline | 76.33 | 75.90 | 7547 | 72.17 | 59.05 | ——QB+SP
AQE 88.12 | 88.14 88.70 | 87.93 | 79.37 AQE 80.71 | 81.51 | 82.28 | 80.80 | 64.46 AQE | 8044 78.46 | 7838 | 78.09 | 71.40
— -QB 86.41 | 8478 8639 | 84.69 | 76.22 — -QB 75.67 | 7277 | 7474 | 6893 | 52.86 — QB 88.28 | 84.91 | 84.81 85.04 84.05
——QB+SP| 93.49 | 9268 92.58 | 91.92 | 86.07 ——QB+SP| 90.36 | 90.28 89.31 | 89.12 | 79.82 ——QB+SP| 88.96 88.84 8831 88.93 | 85.29
Query scale (%) Query scale (%) Query scale (%)
Fig.13 Retrieval performance for simulated low-resolution query.
100 3 o
S e ¥ SRR N
e a—ix ox & £
< 80 o oxa- = =)
g * & — El - i .
60 = - Baseline
%) —— —
2 40 * AQE
£
& 20 - QB
0 x QB+SP
50 500 5,000 50,000 500,000 5,000,000
100 xx WX
=% X KE % i % i 3 X
> n £ & = e
80 s -—% 43 4 ry B I
4 X R 2 = ¥ 3 T
~ & o = T AN .
3 60 - & B - e - Baseline
— ~ =
~ 40 = H » AQE
— = +|
S
< 20 +QB
o 0 x QB+SP
50 500 5,000 50,000 500,000 5,000,000
100 x
iz ; o *?Aﬁ *] 2 s !§
T b s
& 80 e - e
é 60 o A st e He -)
= s = e . = - Baseline
O =l - T X
@« 40 - z » AQE
—
<
£ 20 *QB
0 x QB+SP
50 500 5,000 50,000 500,000 5,000,000
Pattern amount
Fig.14 mAP vs. total number of patterns. This plot shows the improvement was performed by our

QB + SP on most queries that generated less than 100k patterns. In contrast, it had less effect on queries
that generated more than 100k patterns.

KASAMWATTANAROTE et al.: QUERY BOOTSTRAPPING

Table 6

mAP and times of specific query types (easy/hard). FIM takes the longest and is especially
slow on “hard” queries that mostly got high retrieval performance in the first round. QB + SP yielded a

very large performance improvement with very low latency for “easy” queries.

465

S . B B+SP
é '§- Baseline QPrecision(%) 2 Precision(%)
= 1§ [mares | "™ [Tmapes | sDew) mAP+(%) FIMTE) 73 po%) | SDev) mAP+(%)
Ox 5k Easy | 40 | 81.26 0.075 85.51 21.02 4.25 0.166 92.69 14.25 11.43
Hard | 15 87.06 4.471 88.79 10.97 1.72 16.037 95.64 4.07 8.58
Ox 105k Easy | 40 73.94 0.011 73.99 29.94 0.05 0.066 90.77 15.95 16.83
Hard | 15 80.24 0.109 80.13 13.81 -0.11 15.949 89.28 9.19 9.04
Paris 6k Easy | 25 71.09 0.922 86.53 9.23 15.44 0.363 86.17 9.39 15.08
Hard | 30 80.69 21.475 89.74 15.37 9.05 19.030 91.28 12.28 10.59
g0 100 could stop mining the “hard” cases once FIM has discovered
é §2-5 e I enough of the core patterns, which took less than 3 seconds
g 20 e 80, to compute. Accordingly, thanks to transaction transposi-
g 1S Ty o tion technique, we can recover the most of approximated
5 107 é © patterns from the colossal space (e.g. 10 million patterns).
Z 05 ; %
RERYR— = %% é N 50 6. Conclusions
1 3 5 7 9 15 30 45 60
Colossal time (second)
SSS#Patt. OxSk ==#Patt. Ox105k Zzz#Patt. Paris6k The paper proposed Query Bootstrapping (QB), a variant
—QBmAPOxSk ——QBmAPOxI05k --- QB mAP Paris6k of Query Expansion (QE), to better exploit the correlation
——QB+SP mAP Ox5k —— QB+SP mAP Ox105k - -- QB+SP mAP Paris6k

Fig.15 Number of patterns versus time. The discovery of rest patterns
yielded no big improvement in mAP after it had produced enough core
patterns about 100k patterns, which were processed within 3 seconds.

The red vertical lines in Fig. 14 show boundaries be-
tween easy and hard cases. On the easy side, QB + SP
significantly improved mAP. However, it yielded less of an
improvement on the hard side. Table 6 shows mAP values
and processing times for easy and hard cases. QB + SP con-
sumed much more processing time for the hard cases than
for the easy cases, whereas its performance improvement
was significantly larger in the easy cases than in the hard
cases.

Colossal pattern

Although we used transaction transposition to speed up the
pattern discovery process, we still spent a lot of time on the
“hard” cases. Overall, these queries made QB + SP signifi-
cantly slower on average than the other methods, as shown
in Table 6.

The main reason behind this slowdown is that the large
number of relevant images with many visual words in com-
mon caused an explosion in the number of patterns discov-
ered by FIM. This problem is called the colossal pattern
problem. In [20], it is pointed out that not all of these
patterns may need to be discovered and their patterns can
be roughly estimated by using an approximate method [29].
In our study, while mining “easy” queries could be ac-
complished very quickly (within a few hundred millisec-
onds), the “hard” cases were time consuming. According
to the experimental results in Fig. 15, mAP improved only
slightly for the total number of patterns over 100k. Here, we

in the first-round retrievals. To overcome the problem of the
strong dependence on a query image in spatial verification in
AQE, we employed a principled data mining tool, namely,
frequent itemset mining (FIM), to find less ambiguous but
meaningful co-occurring visual words (patterns) from the
initial ranked list. Furthermore, we presented an on-the-fly
support tuning algorithm for providing the best support val-
ues (i.e., minsup and maxsup) for the visual mining process.
In addition, we presented an automated inlier threshold al-
gorithm for LO-RANSAC spatial verification. The patterns
found by FIM are taken into account in a new weighting
scheme called #f-fi-idf .

To the best of our knowledge, we are the first to inves-
tigate auto-tuning of the support parameter for FIM for a vi-
sual mining application and auto-tuning of the inlier thresh-
old for LO-RANSAC geometric verifications. We presented
head-to-head comparisons with state-of-the-art methods in
terms of performance, robustness, and execution time. We
evaluated our approach with the standard evaluation proto-
col on three well-known benchmark datasets, namely, Ox-
ford 5k, Oxford 105k, and Paris 6k. The results show our
approach has reached a new level of performance far beyond
that of the classic BOVW framework or even AQE.

References

[1] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” ICCV, pp.1470-1477, 2003.

[2] R.A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Re-
trieval, Addison-Wesley Longman Publishing, 1999.

[3] G. Salton and C. Buckley, “Improving retrieval performance by rel-
evance feedback,” Journal of the American Society for Information
Science, pp.355-364, 1990.

[4] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total
recall: Automatic query expansion with a generative feature model
for object retrieval,” ICCV, pp.1-8, 2007.

http://dx.doi.org/10.1109/iccv.2003.1238663
http://dx.doi.org/10.1109/iccv.2007.4408891

466

[3]
(6]
(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

K. Lebeda, J. Matas, and O. Chum, “Fixing the locally optimized
RANSAC,” BMVC, pp.95.1-95.11, 2012.

R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” VLDB, pp.487-499, 1994.

C. Borgelt, “An implementation of the fp-growth algorithm,”
OSDM, pp.1-5, 2005.

T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient algorithm
for enumerating closed patterns in transaction databases,” Discovery
Science, vol.3245, pp.16-31, 2004.

Y.-C. Lee, T.-P. Hong, and W.-Y. Lin, “Mining association rules with
multiple minimum supports using maximum constraints,” IJAR,
vol.40, no.1-2, pp.44-54, 2005.

T. Quack, V. Ferrari, and L.J.V. Gool, “Video mining with frequent
itemset configurations.,” FIMI, vol.4071, pp.360-369, 2006.

J. Yuan, Y. Wu, and M. Yang, “Discovery of collocation patterns:
from visual words to visual phrases,” CVPR, pp.1-8, 2007.

B. Fernando and T. Tuytelaars, “Mining multiple queries for image
retrieval: On-the-fly learning of an object-specific mid-level repre-
sentation,” ICCV, pp.2544-2551, 2013.

W. Voravuthikunchai, B. Crémilleux, and F. Jurie, “Image re-ranking
based on statistics of frequent patterns,” ICMR, pp.129-136, 2014.
O. Paul, F. Jon, S. Greg, J. David, and M. Martial, “Trecvid 2014 —
an overview of the goals, tasks, data, evaluation mechanisms, and
metrics,” NIST, USA, 2014.

M. Perdoch, O. Chum, and J. Matas, “Efficient representation of lo-
cal geometry for large scale object retrieval,” CVPR, pp.9-16, 2009.
D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol.60, no.2,
pp.-91-110, 2004.

R. Arandjelovic and A. Zisserman, “Three things everyone should
know to improve object retrieval,” CVPR, pp.2911-2918, 2012.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” CVPR,
pp-1-8, 2007.

M. Muja and D.G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” VISAPP, pp.331-340, 2009.

F. Zhu, X. Yan, J. Han, P.S. Yu, and H. Cheng, “Mining colossal
frequent patterns by core pattern fusion,” ICDE, pp.706-715, 2007.
F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson, “Using
transposition for pattern discovery from microarray data,” DMKD,
pp.73-79, 2003.

F. Rioult, “Mining strong emerging patterns in wide sage data,”
ECML/PKDD Discovery Challenge Workshop, pp.484—487, 2004.
F. Domenach and M. Koda, “Mining association rules using lattice
theory,” 6th Workshop on Stochastic Numerics, pp.122—133, 2004.
C.-Z. Zhu and S. Satoh, “Large vocabulary quantization for search-
ing instances from videos,” ICMR, pp.1-8, 2012.

C.-Z. Zhu, H. Jégou, and S. Satoh, “Query-adaptive asymmetrical
dissimilarities for visual object retrieval,” ICCV - International Con-
ference on Computer Vision, pp.1705-1712, 2013.

C.-Z. Zhu, S. Kasamwattanarote, X. Wu, and S. Satoh, “Tell me
about tv commercials of this product.,” MMM, pp.242-253, 2014.
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost
in quantization: Improving particular object retrieval in large scale
image databases,” CVPR, pp.1-8, 2008.

O. Chum, A. Mikulik, M. Perdoch, and J. Matas, “Total recall II:
Query expansion revisited,” CVPR, pp.889-896, 2011.

PS. Yu, X. Yan, J. Han, H. Cheng, and F. Zhu, “Approximate fre-
quent pattern mining.”

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

Siriwat Kasamwattanarote is a PhD can-
didate at Sokendai, Japan, under the supervision
of Prof. Shin’ichi Satoh. He received MS degree
in Computer Science and Information Technol-
ogy from the Chulalongkorn University, Thai-
land in 2012 and the BS degree in Information
and Communication Technology from the Mahi-
dol University, Thailand in 2009. His research
interests include image processing, multimedia
retrieval, information mining, and software op-
timization.

Yusuke Uchida received his Bachelor De-
gree of Integrated Human Studies from Kyoto
University, Kyoto, Japan, in 2005. He received
a degree of Master of Informatics from Gradu-
ate School of Informatics, Kyoto University, in
2007. His research interests include large-scale
content-based multimedia retrieval, augmented
reality, and image processing. He is currently
with KDDI R&D Laboratories, Inc. and is a PhD
Candidate at the University of Tokyo.

Shin’ichi Satoh is a professor at National
Institute of Informatics (NII), Tokyo. He re-
ceived PhD degree in 1992 at the University of
Tokyo. His research interests include image pro-
cessing, video content analysis and multimedia
database. Currently he is leading the video pro-
cessing project at NII, addressing video analy-
sis, indexing, retrieval, and mining for broad-
casted video archives.

http://dx.doi.org/10.5244/c.26.95
http://dx.doi.org/10.1145/1133905.1133907
http://dx.doi.org/10.1007/978-3-540-30214-8_2
http://dx.doi.org/10.1016/j.ijar.2004.11.006
http://dx.doi.org/10.1007/11788034_37
http://dx.doi.org/10.1109/cvpr.2007.383222
http://dx.doi.org/10.1109/iccv.2013.316
http://dx.doi.org/10.1145/2578726.2578743
http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/tv14overview.pdf
http://dx.doi.org/10.1109/cvpr.2009.5206529
http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
http://dx.doi.org/10.1109/cvpr.2012.6248018
http://dx.doi.org/10.1109/cvpr.2007.383172
http://dx.doi.org/10.5220/0001787803310340
http://dx.doi.org/10.1109/icde.2007.367916
http://dx.doi.org/10.1145/882082.882099
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1351-11.pdf
http://dx.doi.org/10.1145/2324796.2324856
http://dx.doi.org/10.1109/iccv.2013.214
http://dx.doi.org/10.1007/978-3-319-04114-8_21
http://dx.doi.org/10.1109/cvpr.2008.4587635
http://dx.doi.org/10.1109/cvpr.2011.5995601
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7415

