
Query Expansion for Visual Search
Using Data Mining Approach

Author:
Siriwat Kasamwattanarote

Supervisor:
Prof. Shin’ichi Satoh

Doctor of Philosophy

Department of Informatics
School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for Advanced Studies)

February 2016

A dissertation submitted to Department of Informatics,
School of Multidisciplinary Sciences,

SOKENDAI (The Graduate University for Advanced Studies),
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Advisory Committee

1. Prof. Shin’ichi Satoh National Institute of Informatics,
University of Tokyo

2. Assoc.Prof. Duy-Dinh Le National Institute of Informatics

3. Prof. Akihiro Sugimoto National Institute of Informatics

4. Prof. Imari Sato National Institute of Informatics

5. Assoc.Prof. Gene Chung National Institute of Informatics

“A human being is a part of the whole called by us universe, a part limited in
time and space. He experiences himself, his thoughts and feeling as something
separated from the rest, a kind of optical delusion of his consciousness. This
delusion is a kind of prison for us, restricting us to our personal desires and
to affection for a few persons nearest to us. Our task must be to free ourselves
from this prison by widening our circle of compassion to embrace all living
creatures and the whole of nature in its beauty.”

— Albert Einstein

Acknowledgements
I wish to thank to whoever start exploring on the long journey of my thesis. This thesis
is aimed for persuing deeper on my skill sets which will appear here for readers in term
of information retrieval, image processing, data mining, and also software engineering.

I would like to offer my main supervisor, Prof. Shin’ichi Satoh, on his great assistance,
support, and patient guidance along this hill climbing Ph.D. path. His willingness to
give his time so generously has been very much appreciated. I would also like to thank
for Assoc.Prof. Le Duy-Dinh for his advice and useful critiques that keep me improving
my research work and presentation skill. My grateful thanks are also extended to the
rest committees for their comments and suggestions that guided me to the right direction
of what audiences really need. My special thanks are also for Dr. Naoki Chiba, who
allowed me to join Rakuten Institute of Technology as an internship student. During
that period, I can push my concentrate on the core part of this work.

I would also like to thanks for the following friends during my life in NII: Cai-Zhi Zhu,
who let me coordinate along his researches to understand how the state-of-the-arts im-
age retrieval work. Sebastien Poullot, who gave me hints and discussions on how to do
image retrieval in practical ways. Merlin Zhang, who works mostly on Java, but rather
pushed me a lot to convert all my C++ codes from an STL container based to a pure
pointer based. Pannawit Samatthiyadikun, who connects a missing link on my knowl-
edge of Galois connection, then speeding up the mining process is possible. Rathachai
Chawuthai, who guided me look at the most important mistake on my research story
that I really missed and gave the other people aspect on writing the academic papers.
Also, thanks to my friends and all people around me, who are important and valuable,
that shaped me be as today.

Lastly, thanks to the educational and financial support from National Institute of In-
formatics and SOKENDAI (The Graduate University for Advanced Studies) during my
study. I appreciate all the incredible opportunities and memorable experience they of-
fered.

I wish to give the most thankful to my family, who always support me in any decisions,
who guides and gives me the answer when I really need it, and Lee Hyunju, who always
beside me while I was in the most blueness time. And the best thanks for my parents,
who are truly my everything.

Siriwat K.
1 January 2016

iii

SOKENDAI (THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES)

Abstract
School of Multidisciplinary Sciences

Department of Informatics

Doctor of Philosophy

Query Expansion for Visual Search Using Data Mining Approach

by Siriwat Kasamwattanarote

Bag of Visual Words (BoVW) framework is known to be effective for image retrieval.
Query expansion (QE) further boosts the retrieval performance by refining query with
relevant visual words which are geometrically consistent between query image andtc
each of highly ranked retrieved images obtained from the first round retrieval. Since QE
checks pairwise consistency between query and highly ranked images, the performance
may be deteriorated by slight degradation of query image. We propose Query Bootstrap-
ping (QB) as a variant of QE to circumvent this problem by using consistency among
highly ranked images instead of pairwise consistency.

In so doing, we regard frequently co-occurring visual words in highly ranked images as
relevant visual words. Frequent itemset mining (FIM) is used to find such visual words
efficiently. However, the FIM-based approach requires sensitive parameters to be fine-
tuned, namely, support (min/max-support) and the number of top ranked images (top-
k). Here, we propose an adaptive support algorithm that adaptively determines both the
minimum support and maximum support by referring to the first round’s retrieval list.
Selecting relevant images by using a geometric consistency check further boosts retrieval
performance by reducing outlier images from a mining process. An important parameter
for the LO-RANSAC algorithm that is used for the geometric consistency check, namely,
inlier threshold, is automatically determined by our algorithm. We further introduce
tf-fi-idf on top of tf-idf in order to take into account the frequency of inliers (fi) in the
retrieved images.

We evaluated the performance of QB in terms of mean average precision (mAP) on three
benchmark datasets and found that it gave significant performance boosts of 5.37%,
9.65%, and 8.52% over that of state-of-the-art QE on Oxford 5k, Oxford 105k, and
Paris 6k, respectively. Also, we extend the datasets with MIRFlickr 1M distractor and
tested with several severed query conditions to prove our robustness achievements.

Contents

Acknowledgements iii

Abstract v

Contents vii

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 The motivation of this research . 1
1.2 Background . 3

1.2.1 Information retrieval . 3
1.2.2 Image retrieval . 4

1.2.2.1 Feature extraction . 5
1.2.2.2 Codebook generation . 8
1.2.2.3 Database indexing . 9

1.3 Preliminaries . 11
1.3.1 Object-based image retrieval (BoVW) 11
1.3.2 Query expansion (QE) . 13
1.3.3 Average query expansion (AQE) 14
1.3.4 Frequent Item Sets Mining (FIM) 16

1.4 Problem summary . 18
1.5 Contributions . 19
1.6 Outlines . 21

2 Literature review 23
2.1 Existing image retrieval approaches . 23

2.1.1 Visual features . 23
2.1.2 Image retrieval systems . 25

2.1.2.1 Full system . 26
2.1.2.2 Compact system . 30

vii

Contents viii

2.1.3 Feature bundling, packing, and embedding 32
2.1.4 Spatial information . 33
2.1.5 Contextual information . 34

2.2 Approaches adopt frequent item sets mining (FIM) for visual problems . . 36
2.3 Evaluation procedure . 38

3 Query Bootstrapping: A Visual Mining based Query Expansion 39
3.1 Motivation . 41
3.2 Propose approach . 42

3.2.1 Design . 42
3.2.2 Method . 44
3.2.3 Evaluation . 44

3.3 Globally best with local optimized support parameter 47
3.3.1 Motivation . 48
3.3.2 Method . 49
3.3.3 Evaluation . 50

3.4 Integrating Query Bootstrapping to a BoVW 51
3.5 Results . 51

4 Query Bootstrapping extended 57
4.1 Motivation . 58
4.2 Propose approach . 59

4.2.1 Design . 60
4.2.2 Method . 62
4.2.3 Evaluation . 63

4.3 On-the-fly selecting inlier threshold . 65
4.3.1 Motivation . 65
4.3.2 Method . 66
4.3.3 Evaluation . 71

4.4 Results . 71

5 Speed-up mining process 73
5.1 Motivation . 74
5.2 Transaction transposition . 75
5.3 Usage . 77
5.4 Evaluation . 80

6 Experimental setup, evaluations, and discussion 81
6.1 Datasets and evaluation protocol . 82
6.2 System and parameters configurations . 83
6.3 The overall comparison . 85
6.4 Impact of the number of relevant images to retrieval performance 87
6.5 Automatic parameters and relative improvement 89
6.6 An impact of query quality to retrieval robustness 91

6.6.1 Query with noise . 91
6.6.2 Query with lower resolution . 91

6.7 Time consumption . 94
6.7.1 Colossal pattern . 95

Contents ix

6.8 Retrieval result examples and analysis . 98
6.8.1 Normal query case . 98
6.8.2 Small object query case . 101
6.8.3 Low resolution query case . 103
6.8.4 Noisy query case . 105

6.9 Discussion . 107
6.9.1 Benefits of using QB . 107

6.9.1.1 Context discovery . 107
6.9.1.2 Hidden visual words discovery 111
6.9.1.3 Reject irrelevant words 113

6.9.2 QB Limitations . 115
6.9.2.1 Experiments with the other datasets 115
6.9.2.2 Target dataset characteristics 123
6.9.2.3 Weakness summarization 123

7 Conclusions 125
7.1 Achievements remark . 125
7.2 Future work . 127

A PVSS: Portable Visual Search Service for Researchers 129
A.1 Introduction . 129

A.1.1 Motivation . 130
A.1.2 Related work . 132

A.2 PVSS architecture . 133
A.2.1 Server modules . 133
A.2.2 Client modules . 136
A.2.3 Conclusion . 138

Bibliography 139

Index 157

List of Figures

1.1 Image collection as people moments. 1
1.2 Images collection pipeline. 2
1.3 A real index for one book. 3
1.4 The client-server architecture of the baseline BoVW. 5
1.5 The data strtcture of Hessian Affine detector with SIFT descriptor. 5
1.6 The SIFT keypoints and Hessian Affine regions visualizations. 6
1.7 Codebook generation illustration for an image. 7
1.8 The performance evaluation of various visual vocaburaly sizes. 8
1.9 A framework of standard standard bag-of-visual-word. 11
1.10 An example of object-based image retrieval using ROI as a specified object. 12
1.11 A framework overview of a standard query expansion (QE). 13
1.12 A framework overview of a standard average query expansion (AQE). . . 14
1.13 RANSAC spatial verification between images. 15
1.14 An AQE query verification process. 16
1.15 The problems sample when retrieving object using mobile devices. 17
1.16 The overview performance of our methods comparing to the others. 20

2.1 A frequency distribution of the cluster of INS 2011 dataset. 28
2.2 Our cache fetching schemes for SDD and HDD based INV database. . . . 30
2.3 A web interface of BoVW based commercial retrieval system. 31
2.4 The example of the object mined with a clustering method. 35
2.5 THe example of item sets permutation as a hasse diagram. 37
2.6 The illustratation of precision and recall. 38

3.1 The problem of AQE on verifying relevant images with low resolution query. 40
3.2 The illustration of object mined using a data mining approach. 41
3.3 The idea of using co-occurrence object patterns. 41
3.4 Query Bootstrapping framework. 42
3.5 Query Bootstrapping framework (Big). 43
3.6 The conversion from images to transactions and its patterns output. . . . 44
3.7 The patterns outputs example corresponding to the specified minsup. . . 45
3.8 The mAP of fixed minimum support values for Oxford 5k. 45
3.9 The evaluation at various minimum support for Oxford 5k. 46
3.10 The patterns outputs example corresponding to the specified minsup and

maxsup. 47
3.11 Monotonicity properties according to FIM principle. 48
3.12 The mAP comparison between fixed support and an adaptive support. . . 50
3.13 The object occlusion caused a lower inlier count on AQE. 52

xi

List of Figures xii

3.14 The mAP comparison between AQE and our QB when increasing top-k. . 53
3.15 The burtiness matching comparison between AQE and QB. 54
3.16 The quantization error comparison between AQE and QB. 54
3.17 The failure case of a pure QB method. 55

4.1 A meme from the Internet, comparing AQE and our QB + SP. 57
4.2 An illustration when QB takes a verified images from SP. 58
4.3 Projective transformation example. 59
4.4 Query Bootstrapping framework. 60
4.5 Query Bootstrapping framework with a spatial verification module (Big). 61
4.6 LO-RANSAC inlier threshold test. 64
4.7 A sample inlier counts evaluated from a sample ranked list. 65
4.8 The cases on how adaptive inlier threshold (ADINT) finds a threshold. . . 66
4.9 The exploring on the ADINT ratio for the suitable value. 68
4.10 The perfect result of our automatic inlier selection algorithm. 70
4.11 The relative improvement of QB + SP over standard QB and its true

positive count. 72

5.1 Time cinsumption taken by FIM on all datasets. 74
5.2 Pattern discovery using a normal transactions with very large items. . . . 75
5.3 Pattern discovery using transaction transposition technique. 76
5.4 The isomorphic lattice example. 78
5.5 Matrix transposition illustration. 79
5.6 Time usage comparison between FIM and a speed-up FIMT. 80

6.1 The overall performance evaluation. 84
6.2 The overall results show the final look of BoVW, AWE, and QB + SP . . 86
6.3 The impact of the number of relevant images to retrieval performance . . 88
6.4 The acumulated comparison of our approaches. 90
6.5 Retrieval performance for synthetic noisy query. 92
6.6 Retrieval performance for simulated low-resolution query. 93
6.7 The overall time consumption report for all methods. 95
6.8 Time consumption report for QB and QB + SP. 95
6.9 The retrieval performance relationship to the total number of pattern. . . 96
6.10 Colossal pattern vs. time usage. 98
6.11 The true-positive lists for a normal query. 98
6.12 BoVW Matching result with a normal query. 99
6.13 AQE Matching result with a normal query. 99
6.14 QB Matching result with a normal case query. 100
6.15 QB + SP Matching result with a normal query. 100
6.16 The true-positive lists for a low resolution query. 101
6.17 BoVW Matching result with a small object query. 101
6.18 AQE Matching result with a small object query. 102
6.19 QB Matching result with a small object case query. 102
6.20 QB + SP Matching result with a small object query. 103
6.21 The true-positive lists for a low resolution query. 103
6.22 BoVW Matching result with a 20% scale of query. 104
6.23 AQE Matching result with a 20% scale of query. 104

List of Figures xiii

6.24 QB Matching result with a 20% scale of query. 104
6.25 QB + SP Matching result with a 20% scale of query. 105
6.26 The true-positive lists for a low resolution query. 105
6.27 BoVW Matching result with a noisy query. 105
6.28 AQE Matching result with a noisy query. 106
6.29 QB Matching result with a noisy query. 106
6.30 QB + SP Matching result with a noisy query. 106
6.31 The first query example for QB context discovery. 107
6.32 The patterns found among top 4 relevant images. 108
6.33 The contexts discovered through all top 4 images by using QB. 109
6.34 The matching result by using AQE and our QBSP. 109
6.35 The second query example for QB context discovery. 110
6.36 The patterns found among top 4 relevant images. 110
6.37 The matching result by using AQE and our QBSP. 111
6.38 An example of a query image. 112
6.39 The examples of hidden visual word found within the target object. . . . 112
6.40 Result of retrieving with the hidden visual words. 113
6.41 The example shows how AQE and QB reject irrelevant words. 113
6.42 The example shows how AQE and QB reject irrelevant words. 114
6.43 A trial illustration on integration of MVS dataset with our QB. 115
6.44 A trial illustration on integration of INS dataset with our QB. 116
6.45 The evaluation on INS2011 and INS2013 datasets. 117
6.46 The evaluation result for INS2011 dataset. 118
6.47 QB + INS working sample: 9028 . 120
6.48 QB + INS working sample: 9029 . 121
6.49 QB + INS working sample: 9033 . 122
6.50 QB + INS failure sample: 9035 . 124

A.1 A situation at the poster where a researcher (a) presents the work together
with an on-site demo-ready (b) for serving image query from audiences (c).130

A.2 Overall architecture of our framework consisting of an image retrieval
service, which is connected to a web-based service handler that runs using
a web server under a virtualization layer, a host computer, and a client
web interface for heterogeneous devices. 132

A.3 Service connection model for transferring data between core retrieval
module and client web interface. 134

A.4 Best case scenario where a live demo is hosted on a machine connected
to a network using a wired connection and it is able to serve the audience
via a wireless connection. 136

A.5 Example of client-side user interface on a PC browser. 137
A.6 Example of client-side user interface on a mobile browser. 137

List of Tables

1.1 Memory comparison between a normal database and a inverted index
database. 10

1.2 A toy example of simple transaction with its frequent patterns. 18

2.1 The statistic of building database running with our framework. 26

4.1 The comparison between fixed inlier threshold and adaptive inlier threshold. 71

5.1 A sample transaction database. 77

6.1 The statistic of sampling rate for building a codebook. 83
6.2 Performance improvement and time usage report for different type of query. 97

xv

Abbreviations

IR Information Retrieval

CBIR Content-Based Information Retrieval

AQE Average Query Expansion

BoW Bag of Word

BoVW Bag of Visual Word

QE Query Expansion

QB Query Bootstrapping

SP Spatial Verfication

RANSAC Random Sample Consensus

LO-RANSAC Locally Optimized RANSAC

SIFT Scale-invariant Feature Transform

DOG Difference Of Gaussian

GLOH Gradient Location and Orientation Histogram

MSER Maximally Stable External Regions

SURF Speeded Up Robust Features

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

ORB Oriented BRIEF

ASIFT Affine-SIFT

OpenCV Open Computer Vision

FIM Frequent Itemset Mining

LCM Linear time Closed itemset Miner

KDTree K-Dimensional Tree

MVS Mobile Visual Search

FLANN Fast Library for Approximate Nearest Neighbors

xvii

Abbreviations xviii

FINT Fixed Inlier Threshold

ADINT Adaptive Inlier Threshold

AP Average Precision

mAP mean Average Precision

CPU Central Processing Unit

RAM Random Access Memory

GB Giga Byte

TB Tera Byte

RHEL Red Hat Enterprise Linux

GCC GNU Compiler Collection

PCA Principal Components textbfAnalysis

TREC Text REtrieval Conference

TRECVID TREC Video Retrieval Evaluation

MFU Most Frequently Used

SSD Solid-state Drive

HDD Hard Disk Drive

INV INVerted index file

OS Operating System

HE Hamming Embedding

GVP Geometric Visual Phrases

WGC Weak Geometric Consistency

Dedicated to my family

xix

Chapter

1
Introduction

“If there’s a book that you want to read, but it
hasn’t been written yet, then you must write it.”

— Toni Morrison

Figure 1.1: The images taken as memorable memories during my study in Japan.

1.1 The motivation of this research

In the recent days of the information era, images were taken a lot by using several
handy devices such as a smart phone and a digital camera. These devices create a kind
of time-memory as the moments of one people life (e.g., figure 1.1), which will be used
for reminding back their memory in the previous days. As the current social media and
social network technologies allow people to connect and share their life and memories
with friends, million images were rapidly created and increasing size of valuable image
collection these days, which are being retrieved back to the devices for a looking back
purpose. The aforementioned flow can be seen as in figure 1.2.

1

Chapter 1. Introduction

Producing

Indexing

Retrieving

Cameras Internet Big Images

collection Mobile devices

Figure 1.2: Figure illustrate how images were created and retrieved in the this era.

In case we use any services for sharing our memories from several devices like be a PC,
a mobile phone, a tablet, or even on a wearable device through the web services (e.g.,
Instagram, Facebook, Twitter, Flickr, etc.). Retrieving back any image is meant to
load a particular image directly from the server to visualize it on your screen by using
a direct URL, hash tags, or any provided API [1, 2]. Additionally, images are being
indexed into collections of big image databases with specific meta-data, hash tag, time
stamp, geographical location, or even a specific ID. This kind of indexing is to map
the unstructured data into a high-level structured space. And the retrieval will be fast
and easy just like following look up tables on a server for an exact physical location of
the recalling image. On the other hand, searching for an object within one or multiple
images is hard and it will be even more complicated if the image was not provided with
any specific meta-data. For this reason, indexing cannot be done by mapping image to
high-level structured data, but rather be performed by more sophisticated techniques
calling as bag-of-visual-word (BoVW) framework (see section 1.2).

In this research, we focus on the way to search for any specific object from a big image
collection, which cannot be stored on a mobile devices or even a PC. So, we conduct our
research based on a client-server architecture for handling a large-scale image database
and for simulating the way people search for an object while they usually use their own
mobile device. However, the problems raised to researchers and engineers in order to
serve the end-user fast and accurate under several constraints, for instance, a database
size, an image quality, etc.

2

Background

1.2 Background

1.2.1 Information retrieval

In the early year of information retrieval (IR) when people begin indexing and searching
for texts in the documents, a document may contains several sessions. One session may
also contains many paragraphs. Several sentences together form up one paragraph. And
yes, the smallest portion of a document that we may want to find is a word or multiples
that connecting together for building up a sentence. Searching for a specific word from
one documents might be easy by looking up to an index (figure 1.3) at the end of a
document (i.e., a book). In contrast for a real situation, we do not even know a book
name, when the information retrieval technology allows, it helps us by collecting up an
index from the several books together which made us easy in searching on one index of the
whole book collection. This technique is called an inverted indexing [3], which is widely
used in several successful approaches of the information retrieval applications nowadays.
The underlying search algorithm for this scenario is early adopted on a standard boolean
model [4] with query representation as a set of words as called as bag-of-word (BoW)
[3] recently. Namely, each document is regarded as an unordered collection (a “bag”)
of words and represented as N -dimensional histogram of word occurrences, where N is
the number of words in a relies language. Hence, this model tells only the existing of
word appearance in a document that works on a very small document, which is called a
boolean model, that stores a term appearance in binary.

Common usages of text search are not only depend on one word, but rather refer to
a phrase or multiple words grouped together as a query. Then, a vector space model
as proposed in Salton et al. [5] has more advantages over the standard boolean model
because the matching result of words similarity is more informative when it not only
points out the existing of word appearance but also explains how much each word has
been matched in the documents. However, some words, like “the” and “and”, usually

Figure 1.3: The actual index appeared on a book helps readers find an appropriate
page for an interesting word or a phrase.

3

Chapter 1. Introduction

appear more often than the others, though they are less informative than infrequent
words. To handle this kind of “stop word” with extremely high frequency, the words in
the vector space model are weighted based on how informative they are.

A term weighting tf-idf of Salton and Buckley [6] is then introduced for emphasizing a
weight of rarely found words, while reducing a weight of such “stop word” or any words
that appear several time in several documents. The first term tf is a term frequency
weighting as the value of each histogram bin is equal to the number of times the word
appears in the document. Another tern idf is the inverse document frequency as log(1+
1

Ni
), where Ni is the number of documents in which word i appears. The overall bag-

of-words representation is then weighted by multiplying the term frequency tf with the
inverse document frequency idf as a final product of the tf-idf weighting as in Salton
and Buckley [6].

Thereby, similarity calculation between queries and documents is computed using cosine
similarity between tf-idf weighted bag-of-word histograms, and normalizes into a docu-
ment length. This yields documents to be sortable by its score between the given query
and itself.

1.2.2 Image retrieval

Similarly to visual contents, content-based information retrieval (CBIR) is known as
query by image content or an image retrieval by using computer vision techniques to the
information retrieval problem. This technique is rather means to search by analyzing
the contents of an image rather than the keywords, specific tags, meta-data, etc. The
term of contents is comparable to words in a text documents. However, the content
definitions are derived from the image itself, without having humans manually annotate
images by entering keywords or meta-data. This is due to the problem can far larger
from human to do it within a small laboratory group, However, with a lot of human-
hour, [7] contributes the ImageNet as the image annotations organized according to the
WordNet lexical hierarchy Miller [8]. In face, ImageNet is formed just for a high level
human groundtruth.

For a extracting low-level contents within an image, the Bag of Visual Words (BoVW)
framework has been an effective means of an object-based image retrieval since it was
first described in Video Google work of Sivic and Zisserman [9], but still very popular,
and later in a work [10]. A definition of the BoVW can be in a form of the histogram
representation based on independent of visual words. To represent an image using
BoVW histogram, an image can be treated as a document. Similarly, “words” in images
need to be defined too. To achieve this process, it usually includes following three steps:

4

Background

Image and video collection

Offline module Online module

Video 1 Video 2 Video 3 Video 4 … Video n

Feature extraction

Root SIFT

Hessian Affine

Encoder

ANN Clustering

… ……

Vector quantization,
tf-idf weighting, and

normalization

Database indexing

Inverted Database

Image query

Feature extraction

Encoder

…

1

2

3

1

2

3

Search

Rank list

4 4

Similarity

calculation

1

2

Figure 1.4: The architecture shows how images and videos were handled during
the database indexing process (offline module) and how the query image was handled
during the retrieval process (online module). The final product of both online and
offline modules is a BoVW histogram, which can be calculated the similarity matching

for ranking the final result.

X Y A B C Intensity (128 dimensions)

Coordinate Scale, rotation Descriptor (distinctiveness)

Figure 1.5: The data structure shows how SIFT with Hessian Affine store a data for
each keypoint. X,Y are the coordinate of a keypoint within an image space. A,B,C is the
values describe how affine appears around a keypoint. Intensity is the descriptiveness

around a keypoint that consisted with 128 dimension for each keypoint.

feature extraction (feature detection and feature description), codebook generation , and
database indexing as shown in figure 1.4 which represents an architecture of image and
video retrieval scenario using BoVW baseline.

1.2.2.1 Feature extraction

Start from a feature extraction, Lowe [11] proposed a scale-invariant feature transform
(SIFT) . Later, SIFT is the most famous image feature that is widely used in most

5

Chapter 1. Introduction

(a) An original image.

(b) An image with the overlayed SIFT keypoints
in green dots.

(c) An image with the overlayed SIFT keypoints
with Hessian Affine detector produced affine re-

gion in yellow ellipses.

Figure 1.6: The figures show (A) Original image sample. (B) Overlayed image of
keypoints detected by using a blob detection originally used in SIFT feature detector.

(C) Overlayed image of affine regions detected by using Hessian Affine detector.

6

Background

Image Query

BoVW histogramFrequency

Visual words

Figure 1.7: The illustration shows an image was transform into BoVW histogram,
which represented by a frequency of visual words. Visual codebook is similar to a text
dictionary, by comparing, visual word may consisted of a corner, hole, cross, square,

triangle, line, leaf, etc.

of visual related applications. The original SIFT package comes with both feature ex-
traction and feature description. The feature extraction is to detect points of interest,
which is called as keypoints in the SIFT framework, as the spatial information (x, y
coordinate) as seen in a figure 1.6b. The feature description is to describe the keypoints
such that the descriptor is highly distinctive depends on the illumination appeared on
each keypoint. In this step, SIFT generates 128 dimensions for each keypoint as its de-
scriptor. Since the characteristic of general keypoint detector using blob detection is not
robust to the affine change, The works named Hessian Affine region detector of Mikola-
jczyk and Schmid [12, 13], Mikolajczyk et al. [14] come to solve this problem and then
boost the performance of SIFT when it was employed in the works of Michal Perďoch
[15, 16], which generate an affine region information as an ellipse (A,B,C) according to
the follows:

A(X − U)2 + 2B(X − U)(Y − V) + C(Y − V)2 =1 (1.1)

where the rotation in degree (Θ) can be obtained as follows:

Θ = arctan
(B

A− C

)
+ π

2
(1.2)

To understand more on SIFT feature, the figure 1.5 explains how SIFT Hessian Affine
store the data for each keypoint. Finally, the result of Hessian Affine keypoints can be
seen in figure 1.6c as the ellipses illustrate an affine with a scale and a rotation from
SIFT.

7

Chapter 1. Introduction

10000 50000 100000 250000 500000 1000000

ox5k 39.65 64.16 72.46 80.59 83.05 82.88

ox105k 28.86 53.91 63.85 72.99 76.79 75.74

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00
m

A
P

Visual word size

ox5k

ox105k

Figure 1.8: The experiment for tuning a visual vocabulary size for two standard
dataset, namely, Oxford 5k and Oxford 105k. The result shows the same aspect as

increasing a vocabulary size will improve a retrieval performance.

1.2.2.2 Codebook generation

In order to define image contents as words for image, namely, visual word (VW), the
image feature is used in this purpose. According to a SIFT structure (figure 1.5), the
descriptor portion as 128 dimensions vector is descriptive enough to be assigned as a
word. The codebook generation step is to convert vector-represented image patches to
visual codewords (similar to words in text documents), which also produces a visual
codebook (similar to a word dictionary). One simple method is performing clustering
technique like k-means [17, 18] over all the descriptor vectors [19, 20]. However, the
traditional k-means is simply an NP-hard problem [21] for a general vector dimensions
and a number of clusters or a vocabulary size, which we prefer to use 1 million visual
words (as our experiments in figure 1.8) through all our experiments.

In handling this, Philbin et al. [22] proposes to use an approximate k-means method
(AKM) [23] to reduce the time usage, while increasing performance by the a vocabulary
size. Thus, each descriptor in an image is mapped to a certain visual codeword id through
the quantization process. By assigning codeword to nearest cluster using a nearest
neighbor search algorithm. Also, the approximate nearest neighbors (ANN) is also
help speedup the overall process (e.g., Fast Library for Approximate Nearest Neighbors
(FLANN) of Muja and Lowe [24], Muja [25]) Finally, an image can be represented by the
histogram of local descriptors assigned as codewords, namely, visual words to produce
the final product of a BoVW framework called a BoVW histogram (see figure 1.7).
Additionally, BoVW histogram can be sparsely filled with non-zero words when the
total number of keypoint is far smaller than the cluster size, i.e., dictionary size. A good
vocabulary size for data is also been studied in this work [26].

8

Background

1.2.2.3 Database indexing

Assuming we have 1000 images consisted with 1000 keypoints each, the total number
of visual words to be stored in a database is 1 million words. In a very naive way like
bruth force, searching for a query image with 10 keypoints will need to load all 1000
images and find for any of matched words, in total, 1 million words need to be loaded for
calculating a similarity between a query image and the all images in the database. This
technique will be suffered from a larger database size. The technique called inverted
index [3, 6] comes to solve the mentioned problem. Inverted indexing technique is a
one of the most successful component of a typical search engine and indexing algorithm.
A goal of this technique is to optimize the speed of a query, by finding the documents
where word “X” appeared. The time, memory, and processing resources to perform such
a query are saved as seen in table 1.1. With the inverted index created, the query can
now be resolved by jumping to the word id in the inverted index.

However, the existence of irrelevant visual words may degrade the performance of image
retrieval based on BoVW. Here, a word-weighting schemes such as tf-idf inspired by the
idea of text retrieval [3, 6], have been proposed in order to reduce the effect of irrelevant
visual words, which also applicable to a visual based information retrieval like BoVW.

9

Chapter 1. Introduction

Document Total

1 4

2 2

3 4

4 3

5 2

6 4

7 3

8 2

9 3

10 3

Query = {fish,stone,sea,water}

Disk/memory seek: 7 times (for documents)

Load: 22 memory slots from doc = {1,3,4,5,7,9,10}

cat,dog,mouse,cheese

bread,fish,water

tree,bicycle

egg,mouse,fish

cat,tree,fish

cat,stone

Word

cat,fish,sea,tree

egg,bread

bicycle,tree,stone,sea

fish,bread,water

(a) A normal database.

Word Total

bicycle 2

bread 3

cat 3

cheese 1

dog 1

egg 2

fish 4

mouse 2

sea 2

stone 2

tree 3

water 2

Query = {fish,stone,sea,water}

Disk/memory seek: 4 times (for words)

Load: 10 memory slots from word = {fish,stone,sea,water}

1,3

3,5

1,3,8,10

4,7

Document

3,8

2,4,7

1,5,6,10

6

6

2,9

1,4,7,9,10

6,9

(b) An inverted indexing database.

Table 1.1: The memory usage comparison of a toy example between
a normal database (left) and an inverted index database (right).

10

Preliminaries

First-round Query

(tf-idf)

Search

Selected Top-k

Rank

List 1

BoVW

Figure 1.9: A framework overview of a standard back-of-visual-word.

1.3 Preliminaries

In this section, we explain notations used throughout our research along with algorithms
of baseline former approaches, namely, bag-of-visual-word (BoVW), query expansion
(QE), average query expansion (AQE), and frequent item sets mining (FIM).

1.3.1 Object-based image retrieval (BoVW)

The main purpose of object-based image retrieval is to find the most similar objects to a
given query image Q in a database D consisting of M images, where D = {I1, I2, ..., IM}.
An object-based image retrieval refers as a basis of standard BoVW framework, which
can be illustrated as a simple architecture shown in figure 1.9.

If a query is given without any specific bounding box around the intended object, the
image search will interpret the whole image as being the query and will retrieve images
with the globally highest similarities to it from the database. In some cases, the query
is a region of interest (ROI) in an image. The query with ROI is meant to regard within
only an ROI portion as a target object of retrieval as shown in figure 1.10.

Here, Eq. 1.3 describes the result of such a simple retrieval scheme R for a (normally
ranked) list of images.

R = {Ib ∈ D|Ib contains object appeared on Q} (1.3)

The goal of object-based image retrieval, however, is not to identify the most similar
image, but rather to find images from the database collection that contain the same or
visually similar objects, as in the Trecvid Instance Search task [27, 28].

11

Chapter 1. Introduction

Q

D

R
Figure 1.10: An example of object-based image retrieval using ROI as a specified
object on top of a query image Q. Retrieval is done on an inverted index database D.
A rank list R is a similarity result ordered by a score between Q and each of matched

image in D.

We chose BoVW as the baseline for comparison in this study. BoVW extracts local
features from each image (i.e., from the query and the images in the database). In par-
ticular, we used a Hessian Affine keypoint detector by Michal Perďoch [15] and RootSIFT
by Lowe [29], Arandjelovic [30] to obtain on average 1,000 to 3,000 visual descriptors
per image, which is varies depends on the content of an image. We used approximate
k-means (AKM) by Philbin et al. [22, 23] to generate a large visual vocabulary (K = 1
million) (see figure 1.8) and approximate nearest neighbor search (ANN) by Muja and
Lowe [24], Muja [25] to quantize the local features for the sake of speed. A k-dimensional
vector was obtained for each image. Here, we denote the vector of the query (optionally
with the ROI) as Q and the vector of the database image as Ii. Moreover, the vector
components can optionally be weighted by tf-idf . We used the following similarity
between Q and I:

sim(Q, I) = 1−
∥∥∥∥∥ Q

‖Q‖1
− I

‖I‖1

∥∥∥∥∥
1

(1.4)

where ‖·‖1 denotes the L1-norm. This similarity was calculated from all matched non-
zero words, or for only the matches inside the ROI, if provided. The top-k retrieved
results R were those with the k highest similarities.

12

Preliminaries

First-round Query

(tf-idf)

Second-round Query

(tf-idf)
Search

Selected Top-k

BoVW Aggregator
Rank

List 1

BoVW QE

Figure 1.11: A framework overview of a standard query expansion (QE).

1.3.2 Query expansion (QE)

Given an image query, the retrieval algorithm returns a ranked list by checking the
similarities between the query image and the images in the database. After the first
round of image retrieval, query expansion (QE) is a well-known technique that boosts
the performance in the field of text-based information retrieval. It reformulates a new
query from information found in highly ranked documents. The architecture of QE is
show in figure 1.11. QE is regarded as a technique to improve the total retrieval recall
by adding terms that were not found in the original query but might be found in the
retrieved documents.

For image retrieval, given an initial top-k ranked list R, QE assumes that (most of) the
images in the list are relevant and generates a next-round query by averaging the BoVW
histograms of the images retrieved in the first round.:

Q′ =
∑k

b=1 Rb

k
(1.5)

where Rb denotes the BoVW histogram of the b-th image in R.

Since the BoVW method is inspired by text-based information retrieval, it is quite
natural for QE to be applied to image retrieval as well. One of the simplest QE techniques
is called pseudo relevance feedback or blind relevance feedback [31]. The method feeds
these relevant documents back to the system assuming that the top k of the retrieved
ranked items are relevant and then generates the query by aggregating the features of
these items. In object-based image retrieval, the standard way is to use the average of
BoVW histograms of the top-k items as the refined query for the next round retrieval
in order to get improved retrieval performance without an extended of user interaction.
This technique works well in text-based information retrieval, since each term does not
have a strict word order. In contrast, an image has a meaning that depends on the
spatial locations of its visual words Hence, a simple application of QE to image retrieval

13

Chapter 1. Introduction

First-round Query

(tf-idf)

Second-round Query

(tf-idf)
Search

Selected Top-k

Verified Top-k (< k)

BoVW Aggregator
Rank

List 1

L
O

-R
A

N
S

A
C

T
o
p
-k

 V
er

if
ie

r

Verified

Rank

List 1

Spatial Verification

BoVW QE SP

Figure 1.12: A framework overview of a standard average query expansion (AQE)
with a spatial verification module (SP).

may fail because irrelevant images may be included among the highly ranked results and
also because visual words in background regions may be included in the relevant images.
Therefore, the retrieved images may be irrelevant to the query.

1.3.3 Average query expansion (AQE)

To circumvent the problem of background clutter as in QE, Chum et al. [32] takes
geometric information into account in QE. In order to take the advantage of geometric
topology information, Total Recall (Chum et al. [32, 32]) adapts spatial verification
(using RANSAC or the like) between the query image (or query region) and each of the
database images for an object-based image retrieval. Then the method is widely known
as average query expansion (AQE). Given a ranked list of retrieved images according to
the query image with query region, AQE first checks the geometric consistency between
the query region and each of the retrieved images and only selects relevant visual words
in verified images appearing in back-projected regions to be put into the next-round
query. Here, let us assume that k′ images successfully pass the geometric consistency
check (k′ ≤ k) and R′

b is the BoVW histogram of the b-th image. The next-round query
of AQE is computed as:

Q′′ =Q +
∑k

b=1 Rb

k′ + 1 . (1.6)

In this verification, geometrically irrelevant images are rejected, and relevant images are
back-projected onto the query region in order to reject irrelevant visual words appearing
in the retrieved images to formulate the better relevant next-round query by averaging
the BoVW histograms of the original query and the verified images with selected relevant
visual words. The architecture of AQE is show in figure 1.12. This sort of refining with
selected relevant visual words achieves higher recall comparing with that of the first-
round ranked list.

14

Preliminaries

Figure 1.13: An example a] of spatial verification between images by using RANSAC
method. Green lines represent inliers between images. Black lines represent outliers.

aImage reference: https://cyber.felk.cvut.cz/theses/detail.phtml?id=360

A RANSAC like algorithm, e.g., LO-RANSAC that proposed by Lebeda et al. [33] , is
typically used for the geometric consistency check as in figure 1.13. The inlier threshold
parameter (th) is used to control the consistency, which thresholds the number of point
pairs between two images (the query and one of the returned images) satisfying the
estimated geometric transformation (scale, shift, affine, homography, etc.). Verified im-
ages ensure a higher quality second-round query Q′′. In obtaining the average (Eq. 1.5)
for the next round query, the method takes the union of features of the original query
combined with regions in returned images back-projected into the query region by the
estimated transformation.

AQE imposes pairwise spatial constraints on the query image and each of the database
images (see figure 1.14). The method lies at the heart of recent state-of-the-art visual
QE methods. But in so doing it may narrow the range of the expanded query or miss
information that is in the relevant images but not in the query (e.g., it can miss objects
with occlusions or small objects with low granularity or noise). However, since AQE
checks only the pairwise consistency between the query and each of the highly ranked
images, its performance may be affected by slight degradations in the query image (see
figure 1.15).

15

Chapter 1. Introduction

inlier = 10

inlier = 7

inlier = 8

inlier = 7

inlier = 6

inlier = 14

inlier = 0

inlier = 0

inlier = 0

inlier = 2

inlier = 3

inlier = 1

inlier = 2

Q

Q’’R

Figure 1.14: The figure shows a verification of a rank list R with a query image Q.
Inlier counts are calculated by using RANSAC methods. Only the images that pass a
specific inlier threshold will be averaged together for making a second round query Q′′

1.3.4 Frequent Item Sets Mining (FIM)

FIM is aiming at finding regularities in transactions [34]. Well-known application of
FIM is market basket analysis: given large number of lists of items bought by customers
(a list is called a transaction), FIM finds multiple sets of items (called frequent patterns)
bought together by many customers. Here, let us denote that T = {t1, . . . , tnt} is a set
of transactions, and each transaction t = {i1, . . . , im}; i ∈ Z is a set of items. A set of
patterns is defined as P = {p1, . . . , pnp}, where each pattern pi is a set of items. Each
pattern has a corresponding support:

sup(p, T) = |{t ∈ T |p ⊆ t}|
|T |

S =sup(p, T)

P =FIM(T, S)

(1.7)

representing the fraction of transactions which contains the pattern p out of all trans-
actions. The parameter minsup ensures FIM to output only patterns having larger

16

Preliminaries

Figure 1.15: The example of problems when retrieving and an object by using mobile
devices. Here are the example ordered from top to bottom and from left to right:
image with a small object, low resolution image (after user pitched to zoom), noisy
image (under the low lighting condition), blurry image (out of focused), inappropriate
lighting conditions (reflection and back-lighting image), shaky image (query taken under

motion), and occlusion.

17

Chapter 1. Introduction

Img. Ik Trans. tk
I1 t1 = {i1, i2, i4, i6}
I2 t2 = {i2, i5, i8}
I3 t3 = {i2, i3, i9}
I4 t4 = {i1, i2, i4, i7}
I5 t5 = {i2, i3, i8}

Pattern support

{i2} 60%
{i3} 40%
{i8} 40%
{i1, i4} 40%
{i3, i8} 20%
{i1, i4, i7} 20%
{i2, i3, i9} 20%
{i2, i5, i8} 20%
{i1, i2, i4, i6} 20%

Table 1.2: (left) Input simple transactions of top-five images. (right) Corresponding
output patterns found with minsup of 10% (see section 3.2).

supports than a given value. When a pattern to be output contains a large number of
items, FIM may generate an extremely large number of patterns because all elements
of the power set of the pattern are by definition to be output. This problem is called
the colossal pattern problem [35], and it may degrade the performance of FIM. Simple
outputs of FIM are shown in table 1.2.

1.4 Problem summary

For BoVW, similarity score are calculated between images even if it contains only one
match of the visual word, some retrieved images might not directly be related to the
target object. This partially matched object or a small group of visual word does not
always relevant.

AQE comes to solve such problem by utilizing spatial information. RANSAC like method
has been employed for doing geometric verification on them. However, if a query image
was taken in a good condition with highly visible of a target object, spatial verification
will return quite good number of inliers. Since AQE strictly checks only the pairwise
consistency between the query and each of the highly ranked images, its performance
may be affected by slight degradations in the query image.

18

Contributions

1.5 Contributions

We propose a new method called Query Bootstrapping (QB for short). The key idea
of this variant of QE is to use the consistency among highly ranked images, instead of
using only the pairwise consistency between the query and each of the ranked images.
Doing so relaxes the over-dependency on a query that affects AQE, and thus QB may
be more robust to the degradation and/or variation in the query images. We regard
frequently co-occurring visual words in highly ranked images as relevant. We use frequent
itemset mining (FIM) by Uno et al. [36] to efficiently find co-occurring visual words in
highly ranked images, and we also use LO-RANSAC by Lebeda et al. [33] to check the
geometric consistency of the highly ranked images and remove those that do not pass
the check. FIM outputs frequent patterns, each of which is composed of a set of visual
words, that co-occur frequently in the top-k highly ranked images. We then use the
visual words appearing in the frequent patterns to formulate the next-round query by
averaging together BoVW histograms of the original query and highly ranked (optionally
geometrically verified) images with only the visual words in the frequent patterns. To
do this, we propose tf-fi-idf as an extension of tf-idf that takes into account frequent
patterns (fi) . This method requires the parameters to be carefully designed, namely,
the support as the fraction of co-occurrences in the top-k highly ranked images, and the
top k as the number of highly ranked images to be fed to QB. Example of second-round
queries are illustrated in figure 3.2, with back projecting image segments of highly ranked
images that contain visual words corresponding to frequent patterns into the original
query space.

There have been a number of previous attempts at using FIM for image retrieval; how-
ever, very few of them have dealt with automatic optimization of such parameters. Here,
we devised an adaptive support selection algorithm that returns both the minimum sup-
port minsup and maximum support maxsup in order to find the optimal faction of
frequent patterns out of the top-k images. Moreover, we also created an algorithm that
selects a suitable inlier threshold for the LO-RANSAC geometric consistency verifica-
tion, which can be used to indirectly determine the value of k of the top-k highly ranked
images. We tested our approach on standard Oxford and Paris benchmark datasets (Ox-
ford 5k, Oxford 105k, and Paris 6k by Philbin et al. [22, 37]) and also with the extended
version with MIR Flickr 1M dataset by Huiskes and Lew [38] (Oxford 1M and Paris
1M) and found that it outperforms a BoVW baseline, yields a significant performance
improvement over AQE, and preserves higher robustness to query degradations. The
overview of our performances comparing to the other baselines is present in figure 1.16.

19

Chapter 1. Introduction

2
0

0
7

-------------------2
0

0
9

--2
0

1
1

----------2
0

1
2

--2
0

1
4

-----------------------------------2
0

1
5

つ
づ
く

B
o
V

W

[22
]

S
p
atial

v
erifica

tio
n

[22
]

A
Q

E

[3
2
]

L
o
cal

g
eo

m
et

ry
 [15

]

T
o
tal

recall II

[36
]

H
ello

n
eig

h
b

o
rs [37

]

D
Q

E

[30
]

A
Q

E

[38
]

D
Q

E
 +

B
o
o
stin

g
 [38

]

D
Q

E
 +

B
o
o
stin

g

(g
ro

u
p
)

[38
]

B
o
V

W

[O
u
r]

A
Q

E

[O
u
r]

Q
B

[O
u
r]

Q
B

 +

S
P

[O
u
r]

O
x
fo

rd
 5

k
6
1
.2

0
6
4
.5

0
7
8
.5

0
7
8
.8

0
8
2
.7

0
8
1
.4

0
7
9
.8

0
8
0
.0

0
8
2
.3

0
8
9
.6

0
8
2
.8

4
8
8
.1

2
8
6
.4

1
9
3
.4

9

O
x
fo

rd
 1

0
5
k

5
1
.5

0
5
7
.1

0
7
2
.5

0
7
2
.5

0
7
6
.7

0
7
6
.7

0
8
0
.9

0
7
6
.7

0
8
1
.8

0
8
9
.0

0
7
5
.6

6
8
0
.7

1
7
5
.6

7
9
0
.3

6

P
aris 6

k
6
3
.9

0
6
5
.5

0
7
2
.0

0
6
3
.4

0
8
0
.5

0
8
0
.3

0
7
8
.3

0
7
6
.9

0
7
8
.2

0
8
5
.6

0
7
6
.3

3
8
0
.4

4
8
8
.2

8
8
8
.9

6

O
x
fo

rd
 1

m
7
5
.2

8
7
8
.4

8
7
7
.5

6
8
9
.5

2

P
aris 1

m
5
9
.9

5
6
4
.3

2
6
9
.9

4
7
9
.8

1

4
0
.0

0

5
0
.0

0

6
0
.0

0

7
0
.0

0

8
0
.0

0

9
0
.0

0

1
0
0
.0

0

mAP

R
ecen

t O
x
fo

rd
 5

k
, 1

0
5

k
, a

n
d

 P
a

ris 6
k

 p
erfo

rm
a

n
ce

O
x

fo
rd

 5
k

O
x

fo
rd

 1
0
5

k
P

aris 6
k

O
x

fo
rd

 1
m

P
aris 1

m

F
igure

1.16:
T

he
overview

result
ofour

m
ethods

(Q
B

and
Q

B
+

SP)
com

paring
to

the
other

m
ethods,(from

the
left)

B
oV

W
by

Philbin
et

al.
[22],Spatialverification

by
Philbin

et
al.[22],A

Q
E

by
C

hum
et

al.[32],Localgeom
etry

by
M

ichalPerďoch
[15],TotalR

ecallIIby
C

hum
et

al.[39],
H

ello
neighbors

by
Q

in
et

al.[40],D
Q

E
by

A
randjelovic

[30],A
Q

E
by

C
hen

et
al.[41],D

Q
E

+
B

oosting
by

C
hen

et
al.[41],and

D
Q

E
+

G
roup

boosting
by

C
hen

et
al.[41].

20

Outlines

1.6 Outlines

This thesis is consisted with 7 main chapters and 2 additional appendixes. The organi-
zation of the chapters are mostly for for preparing knowledge for the readers from the
fundamental foundations, applications, and the experiments as follow:

Chapter 1

We discuss several fundamental knowledge that required in prior to understand an image
retrieval for grounding up basis of the reader. Starting from information retrieval theories
explaining the way people search text documents. Following with a document indexing,
similarity models, and term weighting scheme. The way to apply information retrieval
to a visual problem and using SIFT feature to be described as a visual word. Hessian
affine detector also a famous alternative to be used with SIFT framework. Clustering
technique and the approximated methods is presented. BoW and BoVW are now almost
the same, but AQE utilize better spatial information from images. RANSAC is used
to verify images but not robust to query turbulences. We present a work based on an
data mining technique. The result show our methods reach highest performance in this
recent years comparing to the baselines.

Chapter 2

Literatures are being discussed here. Starting image retrieval works from the previous
years with the smallest details of image content representation approaches, including
feature extraction and the methods that applied this kind of visual feature on it, e.g.,
feature selection, feature matching, feature classification, and the libraries that we can
use it easily. Following with the image retrieval system that was classified into a large
scale system and a compact scale system, and the techniques to build up an inverted
index database efficiently that suitable for SSD and HDD based storage devices. We
also discuss about the cache management methods that help out system handle a very
large scale database on a comparatively low spec of memory resource. Together with
the frequent item sets mining tools that enable us to find co-occurrence object patterns
and the recent approaches that adopt frequent item sets mining for visual problems.

Chapter 3

We present our propose method, namely, Query Bootstrapping (QB) in this chapter.
Starting with the motivation of our work following with the work in details including

21

Chapter 1. Introduction

how can we process visual mining for the relevance list. We also present an algorithm
for tunning support parameter adaptively. Finally, we introduce the way to integrate
object mining result to the traditional BoVW framework.

Chapter 4

The extended version of our QB is present in this chapter. Beginning with the motivation
and follow up by discussing the way to use spatial verification result appropriately. Also,
another automated algorithm for tuning parameter is presented for finding an inlier
threshold automatically on-the-fly.

Chapter 5

As the original FIM tool was not designed for a large number of item like visual words,
we then show how to speedup mining process by using Galois connection on a full lattice.
This technique is know as transaction transposition.

Chapter 6

We provide the overall evaluation of our method with the state-of-the-art in this chapter.
Such as the impact of number of top-k relevance images, comparisons between fixed
parameter and auto-parameters. Moreover, we evaluate the performance with various
query turbulences for testing the robustness, e.g., object size problem, query resolution
problem, noisy problem. Finally, the time consumption in details are also analyzed.

Chapter 7

Finally, the thesis is discuss the conclusion and the future work on this chapter.

22

Chapter

2
Literature review

“Life is like riding a bicycle. To keep your balance,
you must keep moving.”

— Albert Einstein

2.1 Existing image retrieval approaches

The goal of a large scale object-based image retrieval [15, 22, 30, 37, 42, 43] is to retrieve
all images containing a specific object in a large scale image dataset, given a query image
of that object. Generally, all the methods are required to provide good retrieval perfor-
mance and be able to execute in a very fast or near real-time. Due to the restrictions of
the technologies e.g., memory, disk space, transmission latency (network), etc. , we have
to solve problems, at least to find a sweet point among limitations. Other challenges are
large variations in the imaged object appearance due to changes in lighting conditions,
scale and viewpoint, as well as partial occlusions.

2.1.1 Visual features

The question arises how to represent an image in a computer. We are not talking about
pixel, which is too small to describe thing as image content. This representation has to
be robust to large changes in imaging conditions, scale changes and differences in camera
viewpoint. The standard approach is to extract many local image patches as an image

23

Chapter 2. Literature review

representation. This procedure relies on the assumption that two similar images will
share a significant amount of local patches which can be matched against each other.
Local patches are normally extracted by using detector, which is finding an interesting
point called keypoint.

The major processes of image feature extraction are feature detection and feature de-
scription. The popular feature detectors include scale-space extrema detection on differ-
ence of Gaussian (DoG) [11, 29], affine region detections are [12–14], maximally stable
external regions (MSER) [44]. And the alternative to the slow detector like SIFT are
FAST [45, 46], Harris [47, 48], etc. , which are a magnitude faster than others as its
name, but for different purposes alternatively for corner detection and edge detection.

In order to qualify if two images contain the same object is based on extracted image
patches are matched. Normally, similarity computing between patch sets cannot be
done by raw pixel colour or intensity. Since it is clearly not robust to changes in imag-
ing conditions. Lowe [11, 29] then presented scale-invariant feature transform (SIFT)
descriptors that are by design robust to such changes, as well as being discriminative
enough to distinguish between different patches. From that point, visual related re-
searches has been encouraged to work with local image features. Applications include
object recognition, robotic mapping and navigation, image stitching, 3D modeling, ges-
ture recognition, video tracking, individual identification of wildlife and match moving
[49].

The other image features inspired by SIFT are trying to improve the speed and sev-
eral drawbacks. Gradient location and orientation histogram (GLOH) [14] reduces the
dimension of descriptor to 64 instead of 128 on SIFT by using principal components
analysis (PCA). Histogram of oriented gradients (HOG) [50] works very well as a de-
scriptor for detect objects such as human when it was first introduced, as used in many
computer vision researches that need to find human [51–53] and other objects. Speeded
up robust features (SURF) [54] is several times faster than SIFT and claimed by its
authors to be more robust against different image transformations than SIFT. Since
the speed of SIFT and even SURF is not quick enough for time mattered applications,
researchers then introduce several binary features for real-time usages. Binary robust
independent elementary features (BRIEF) (55) is introduced for a highly discriminative
descriptor with relatively few bits and can be computed using simple intensity difference
tests. Binary Robust invariant scalable keypoints (BRISK) [56] is presented with a key
to speed lies in the application and computed in a scale-space FAST-based detector with
combination of a bit-string descriptor. ORB is then follows for an efficient alternative to
SIFT or SURF [57]. ORB is a very fast binary descriptor based on BRIEF, It claimed
to has two orders of magnitude faster than SIFT, while performing as well in many

24

Existing image retrieval approaches

situations. However, it seemed in these days people are still love in SIFT performance,
while prefer ORB in its speed on real-time application and a very compact code. At
least, ORB is presented by a team who made an open source computer vision, namely,
OpenCV [58].

Several alternatives based on SIFT are, ASIFT: a fully affine invariant image compari-
son method, Affine-SIFT [59] by pre-computing several affine transformed images using
different camera angles then process all images with SIFT. And also with the improved
of affine model within the feature detector, Perdoch Hessian Affine detector with SIFT
descriptor is then introduced in [15, 16]. Most of visual features are implemented and can
be easily integrated with many computer programming language and tools like, OpenCV
[58], Matlab, Python, and the libraries like VLFeat [60, 61], Scikit-learn [62, 63], etc. .

Given sets of local descriptors extracted from all database images and the query image,
large scale object retrieval duty is to efficient matching of the query descriptor set to
the database descriptor sets and be able to output a rank of relevant images according
to its similarity.

There are also several approaches that applied visual feature directly on their works. For
example, query adaptive similarity by using feature to feature similarity by Qin et al.
[64], an algorithm to discover useful features instead of confusing ones on a large scale
dataset by Turcot and Lowe [65], relevance feature selection for a noisy medical image by
Bugatti et al. [66], a fast kernel for feature matching for classification by Grauman and
Darrell [67], an image classification for a large dataset by Deng et al. [68] that produce
a relationship between images with its lexicon like WordNet by Miller [8]. And also a
recognition works by Leung and Malik [19], Wallraven et al. [69], Nister and Stewenius
[70].

2.1.2 Image retrieval systems

The full system of image retrieval have two trends, (1) a very large scale databases
containing tens or even billions of images that performs with very high performance
and huge amount of meta-data, thereby increasing the cost of computing power or
(2) not so large system containing only small meta-data, some store only image id,
also the descriptor level is very compact and back with some drawback about retrieval
performance.

25

Chapter 2. Literature review

 Name Total videos Total images
 Total visual

features

 Database size with

spatial info. (in KB)

Stanford-book - 101 130,719 6,916

Stanford-card - 100 91,364 4,836

Stanford-cd - 100 99,939 5,360

Stanford-dvd - 100 135,372 7,280

Stanford-landmark - 501 628,337 33,452

Stanford-paint - 91 103,326 5,572

Stanford-print - 100 167,560 9,016

Stanford-vdo - 100 102,050 5,480

Oxford 5k - 5,063 17,390,270 928,764

Oxford 105k - 105,134 329,147,561 17,776,676

Paris 6k - 6,392 20,244,882 1,069,704

Oxford 1M - 1,005,063 798,393,536 43,239,632

Paris 1M - 1,006,392 801,248,148 43,381,504

INS 2011 20,982 1,650,827 917,656,466 42,289,028

INS 2012 74,958 2,256,930 1,908,832,917 91,422,180

INS 2013-2014 471,526 7,837,877 9,814,391,541 443,438,120

S
m

a
ll

-s
c
a
le

 d
a
ta

b
a
se

L
a
rg

e-
sc

a
le

 d
a
ta

b
a
se

Table 2.1: The dataset statistics show the details of compact scale database and
large scale database in term of total number of videos (if available), total images, total
number of visual features, and the database size (in kilobytes (KB)) including a spatial
information. The datasets are, Stanford-MVS [71] for a small-scale, and for large scale
are Oxford 5k,105k, and Paris from the work [22, 37], and even larger with adding MIR
Flickr 1M dataset [38] into Oxford 5k and Paris 6k to build Oxford 1M and Paris 1M

dataset.

2.1.2.1 Full system

A very large scale of image retrieval is aimed for executing the query search through a
large scale image database in a sub second.

The important question to ask the is how scalable of BoVW based approaches? In our
work we have successfully run our BoVW-based retrieval system on a single server which
performed a search task using one CPU on an entire dataset of large scale images in less
than a second. The statistic of building database is presented in table ??.

As a framework is however firstly introduced in Video Google of Sivic and Zisserman [9],
however the database is just a sampling of image one frame per second, thereby not so
large. Real large scale is begin around the work of Philbin et al. [22], with a very large
vocabulary size of 1M to 16M with a very high time complexity of k-means. Therefore,
it is intractable to compute exact k-means for the suggested vocabulary sizes. Philbin
et al. [22] shows that using an approximate k-means (AKM) to build clusters, namely,
visual vocabulary, by using a randomized k-d tree is significantly fast with a complexity
of O(Nd log(Nw)), where Nd is the size of training descriptor and Nw is the size of visual
words.

26

Existing image retrieval approaches

As TREC conference series of National Institute of Standards and Technology (NIST)
published a very large video dataset [72] for the Instance Search task in the TREC Video
Retrieval Evaluation (TRECVID) workshop. The work of Zhu and Satoh [73] proved
the concept of using a very large vocabulary size of 1 million words from a standard
BoVW framework proposed by Philbin et al. [22] together with a traditional SIFT
feature [11, 29]. Some work [26, 37, 74, 75] proposed to work with soft assignment for
visual word. However, we prefer to increase its descriptor discriminativity while reducing
the effect of visual burstiness [76] from the quantization error, which can be founded
as the high frequent word in figure 2.1. Then, with RootSIFT technique proposed by
Arandjelovic [30], burstiness problem seemed to be helped since the shape of the cluster
is in a kind of power law distribution (see figure 2.1). Also, with the affine region for
feature detector from Michal Perďoch [15, 16]. All these ingredients are efficiently push
Zhu and Satoh [73] performance on this large scale dataset to be beyond any others in
TRECVID Instance Search 2011.

Later, a much larger dataset is included in Zhu et al. [77, 78]. The dataset archives are
collected on three and a half years of full-day TV programs from seven Japanese TV
channels. and five-channel (TBS, TV Tokyo, NET, FUJI and NTV) commercials into
consideration. The dataset was prepared to be only commercial videos excluding news,
dramas, etc. The video dataset is collected using recurrence hashing algorithm proposed
in [79], was applied to detect commercials and clustered those detected commercial
reruns into groups. Additionally, the work of Zhu and Satoh [73], Zhu et al. [77, 78] are
kind of fully large scale system with a client-server based architecture (see figure 1.4).

Resource limitation
Although this performance is quite impressive, the resource requirements e.g., RAM and
CPU are scale linearly with the number of features in the database. For every feature
in the dataset, the inverted index database has to store the post list of an image id
that contain such of visual id. For example, the image is encoded as a 64-bit integer
(8 bytes). For a database of 1M images, assuming each image were assigned with 1k
visual words. To build a basic inverted index, it takes about 8 GB of disk space. And
to make a cache hit 100% for this inverted index, all this 8 GB of memory will be used
by a search module (calculated with out data structure headers, usually 2-3 times of the
actual data size is total size after included the variable headers (C++)). Thus, with a
dataset 100 times larger, it is not possible to use the same BoVW architecture, as it is
very expensive, but may possible with a single machine with 800 GB of RAM , or we
need to change the single machine architecture to be able to execute the search module,
in parallel using a distributed machines and distributed inverted index database [80]
with hadoop and map-reduce style [81] , or even on cloud , etc.

27

Chapter 2. Literature review

0 2 4 6 8 10
Visual word id (sorted) #10 5

0

500

1000

1500

Fr
eq

ue
nc

y

Figure 2.1: A cluster distribution of an Instance Search 2011 dataset shows the visual
word clusters built by an approximate k-means algorithm (AKM) and

quantized by an approximate nearest neighbor algorithm (ANN)
has a shape seemly like a power law distribution.

The efficient ways to build a FAST-READ inverted index database
In order to solve the problem in case we have a very limited spec of a server, we build
a framework as used in Kasamwattanarote et al. [82] with a very flexible in order to
control the amount of memory usage during retrieval. As the cluster distribution as
shown in a figure 2.1, we learn that, the high frequent words have more chance to be
appeared in many images while the low frequent words are also important, but will not
be visited that much. We then generate an inverted index with the following criteria for
building a very FAST-READ inverted index for a general I/O:

• To save space on the memory, not all visual words need to be cached before hand.

• Inverted index is stored as a file on a general hard disk and it is unavoidable not
to be read randomly, but it much prefers to be read sequentially.

• The high frequent visual words have higher probability that it will be matched
with larger amount of images.

From the mentioned criteria, we then reformulate an index in-memory in advanced before
flushing out into the disk. By sorting a lookup an index by its frequency, then write
out all the post-list of documents according to its new assigned index. This process
will make an inverted index readable sequentially from low to high identity (i.e., id 0 to
999999 in case of 1M vocabulary size), thereby the high frequent index will be grouped
at the beginning of the database file.

28

Existing image retrieval approaches

We implemented an inverted index in two versions depends on an underlying I/O.

1. In case of storing and inverted with SSD , we can separated each visual word
into each independent file as done in Zhu et al. [78]. For example, there will be
1 million files for handling 1M vocabularies. With SSD, we can perform a quick
fetch operation within a very small latency, and also we can seek to any index with
a constant time. Another benefit of storing inverted index independently is that,
on each visual word index can be able to be updated on-the-fly in the case when
we need to add more images or video frames. This usage seemed to be rarely use
for an academic purpose, but on-the-fly updating the index will be necessary for
the practical search engine e.g., Google.

2. In case of storing an inverted index with a normal HDD , randomly read is not
recommended since accessing on a spinning disk require rather high latency. So,
we store an inverted index into one BIG file, containing all visual words with its
post-list image identification, which are also sorted by its term frequency. One
reason is that, we need our retrieval module to fetch all cache from this slow
HDD in sequential to reduce the hardware latency of moving a head and spinning
disks. However, since we use 1 million words, the visual word histogram is usually
sparse for each query search request. To handle this problem, we implemented an
algorithm to group the cache request together for making more chance in accessing
the cache mostly in sequential. The HUGE benefit of doing this is that, the
next requests will get higher cache hit rather than cache miss, since the cache of
around most frequent visual words will be cached faster and faster in each round
of retrieval. The illustration of our caching scheme is present in a figure 2.2.

By performing a caching strategy, for each new query request, the cache hit rate will be
richer in each round of retrieval. and also, it is hard and expensive to make a cache hit
100% when the initialize the retrieval system, especially this technique will save a lot of
memory on a limited resource or a shared environment.

Moreover, we also implemented a cache management by using most frequently used
(MFU) algorithm [83–85] as found in a visual memory management technique or a page
replacement technique of the operating system in order to utilize a limited memory
space under a machine that has limited resource. These memory management technique
is applied in the work [28] that run with a very huge INS 2013 dataset with 443 GB
of an inverted index database on a machine with 64 GB of RAM . This technique is
also applied in and Kasamwattanarote et al. [82] as to prove the concept in handling
a very large database and also very effective for our work, namely, PVSS: portable
visual search service for researchers [86] that make a large scale commercial search [78]

29

Chapter 2. Literature review

SSD-based

INV module

HDD-based

INV module

Cache request / actual fetch

Cache request

Actual fetch

1 1M

1 1M

1 1M

SSD-based

INV module

HDD-based

INV module

Cache request / actual fetch

Cache request

Actual fetch

1 1M

1 1M

1 1M

Figure 2.2: Our implemented cache fetching schemes for SSD-based inverted index
database and HDD-based inverted index database of one-time query search. (top) For
random access is possible for a fast I/O like SSD, the cache request and the actual
fetch is at the same index. (bottom) For a slow I/O like HDD, the sequential access
is preferred, so the cache request will be grouped together when the near requested

indices can be detected.

possible (hosting a 52 GB of inverted index database on a limited 4 GB of virtual machine
memory) to be served portably using a standard laptop PC with a server service hosting
on the same machine by VM ware (see the retrieval interface in figure 2.3).

2.1.2.2 Compact system

Due to the size of a database and the limitation on computing resources, several ap-
proaches are also push effort for a compact system, major for a faster image retrieval
and for adaptable to mobile device approaches. Firstly, Mikolajczyk et al. [14] proposes
a SIFT like feature and reduce the descriptor from 128-dimension to 64-dimension by us-
ing PCA. Later, recently, binary features are proposed [45, 46, 55–57] for fast processing
and very light weight of binary descriptor.

Thereby, these aforementioned features and its compression approaches provide a direct
benefit to improve a speed and memory consumption for a large scale image retrieval
systems and especially the methods will provide much usefulness for mobile approaches.

Most usage of mobile device in image retrieval is practically on a recognition problem.
However, the problem is cast to an image retrieval system that need a specific spec for
example, the system require a fast response to for an interactive user experience, the
result must be reliable (comparing to a general image retrieval that returns many images
as a rank list, but with a compact mobile device, only a top first image is important), a
database size cannot be so large, a memory consumption should be very small, and the
transmission to the server should not be that long.

30

Existing image retrieval approaches

F
igure

2.3:
A

n
interface

show
s

the
portable

com
m

ercialretrievalsystem
that

run
a

large
scale

im
age

database
w

ith
our

m
em

ory
m

anagem
ent

techniques.

31

Chapter 2. Literature review

Girod et al. [87] presents a work that trying to model this problem as, a mobile visual
search (MVS) systems that target a smaller dataset for some specific purpose e.g., rec-
ognize media covers, book spines, outdoor landmarks, artwork, and video frames in less
than a second per query. Also, [88] also proposes a dataset for mobile visual search
works, namely, Stanford Mobile Visual Search Dataset [71], which contains camera-
phone images of products, CDs, books, outdoor landmarks, business cards, text docu-
ments, museum paintings and video clips. The dataset has several key characteristics:
rigid objects, widely varying lighting conditions, perspective distortion, foreground and
background clutter, realistic ground-truth reference data, and query data are also col-
lected from various quality of mobile phone cameras.

Even though researcher also push effort on the other ways around to deal with a large
scale problem. The work of Chen and Girod [89] proposes a way to compress a database
and trim a lot of unnecessary visual words (e.g., from 1M to 250k) resulting to reduce
the size of database and memory usages significantly, which is very efficient for running
on a mobile device with less memory. The work from Chandrasekhar et al. [90] proposes
a low-bitrate histogram of gradient (HOG) descriptor, and Ji et al. [91] also proposed
an encoding algorithm for a low bitrate of signature.

The work of [92] proposes a way to reduce amount of data transmission significantly by
mainly resize a query into smaller thumbnail. His work [92] reports the performance of
retrieving with a small query image can be improved with a preprocessing on a server
side (scaling up), and also with a compact feature descriptor computed from a client
side that help explain a bit more for the specified query image.

And for a very compact work, Panda et al. [93] proposes a way to remove unnecessary
information, compress a database, and so, to make a fully offline mobile retrieval system
that can recognize and answer for a query request only a “label” of the corresponding
object or landmark. This system need only precision @1 to be corrected.

The applications of a mobile visual search work that applied on a real-world problem are
for example, sharing a mobile landmark in real-time by Dai et al. [94], product search
He et al. [95], CamFind - a very deep back-end object recognition system by CloudSight
[96] , and SATCH - a book cover search for a Japanese mobile company, KDDI [97] .

2.1.3 Feature bundling, packing, and embedding

Fisher kernel has been used with BoVW histogram sometime before. However, the
work by Perronnin et al. [98], Jegou et al. [99], Jégou et al. [100] proposes ways to
improve fisher kernel as by compressing the BoVW using Fisher kernel as called it as a

32

Existing image retrieval approaches

Fisher vector . The feature vector represented as a Fisher vector is significant smaller
than BoVW, with using only few hundreds of bits per image, and significantly better
in term of retrieval speed than any compressed BOVW approaches. Later, BoVW
histogram compression is still being proposed as Sánchez and Perronnin [101] and [102]
for a signature compression works.

Jégou et al. [103] proposes to an architecture alternative to BoVW framework, with a
compact binary signature in additional to the inverted index posting list. This signature
is called Hamming embedding , is used to the nearly matches of BoVW with the criteria
on the Hamming distance between the query and matched signatures is small enough.
The work of Jegou et al. [104] also proposes a fast memory-efficient method for ANN
search adapt from their Hamming embedding (HE) . Jégou et al. [105] extract MiniBOFs
by random aggregation of the binarized BoVW vectors. feature bundling [106] [107–
109] propose a scalable method for discovering frequently co-occurring visual words by
using MinHash [110]. And He et al. [95], Wang et al. [111] propose the use of hash
bit for projecting a compact visual words code. All these approaches aimed to make a
representative of image with more compact visual words for faster in search and lower
memory usage.

2.1.4 Spatial information

We have been concentrating on image representation as local descriptors that quantized
into BoVW histogram. However, image is not just only containing visual word as its
contents. As the standard BoW on text retrieval has one key problem is that, the words
list on a vector space model will lost its relationship or the orders of each word in a
sentence. The problem also escalated into BoVW, as the visual word will lost its spatial
location from the image space. To solve the problem, people try to integrate the spatial
information into the representation or even on the final evaluation for ensuring that the
final result will be relevance to the object spatial information too. The exam of our
early idea on using spatial locations from top-k frequent visual words can be seen in the
figure 2.4.

The 2D spatial location can be used in different step during retrieval.

1. Early in the signature construction step.
The work of Wu et al. [112], Wang et al. [113], Zhang et al. [114] including a
MinHash based by [115] focus on augmenting the local descriptor with a description
of the distribution of visual words in the spatial neighborhood. Since the works are
quite near duplicate search, are typically sensitive to feature drop-outs and scale

33

Chapter 2. Literature review

changes. Yao and Li [116] proposes a way to group visual features for recognizing
human and object that has interaction. The work from spatial Philbin et al.
[22], Wang et al. [117], Cao et al. [118] present the way to embedded spatial
information into the signature using various approaches. And also including the
work of spatial coding for web image search by Zhou et al. [119].

2. During similarity calculation
Spatial information can be modified into the inverted index database. During the
similarity calculation, the retrieved spatial information will be used for calculating
the similarity as in the work of Zhang et al. [120], namely, geometric visual phrases
(GVP) . collocation patterns [121]

3. After the first round retrieval
This kind of using a spatial verification is at the object level. By verifying the
query image to the retrieved images, an expensive spatial verification method like
RANSAC will verify the set of keypoint location between them and return an inlier
count as the output. This kind of technique is also applied on a spatial verification
work for large scale retrieval, e.g., Michal Perďoch [15], Philbin et al. [22] and also
in the work namely, weak geometric consistency (WGC) of [103]. The aim of the
spatial verify the retrieved images is to re-rank the images order by the high inlier
and move down the false matches to its end, thus improving (decreasing) the false
positive rate.

2.1.5 Contextual information

Usually, BoVW representation will provide us the frequency of visual contents appeared
on an image. Regarding to the target object, a query is generally be cropped for focus-
ing the target object or even provided with an ROI as to control the background and
foreground area.

By using this context information, calculating a similarity between a query image to
each of an image in the database will be done regarding to a foreground area. Chum
et al. [39] proposes a way to utilize this information by building a spatial context model
that is trying to reject the score that come from a background area. And also Zhu et al.
[122] proposes a work that utilize this context information for assigning a weight to
background and foreground differently in dissimilarity calculation as the work namely,
query adaptive asymmetrical dissimilarities.

Using multiple queries is also useful in order to utilize much wider of content descriptions
with the different perspective. Multiple query images are used earlier in [123] as to cluster

34

Existing image retrieval approaches

Figure 2.4: The figure shows the example of the objects found using our early idea
to find the frequent objects by applying a clustering algorithm on the spatial location

on all the frequent visual words that appear on the first round retrieved result.

multiple image results from the first round retrieved images for re-ranking. The work of
web image search by Krapac et al. [124] is also utilize the related images on the web as
multiple queries. And also, the works by Chen et al. [41], Arandjelovic and Zisserman
[125] present the way to use multiple image queries and a group of query for a large
scale system as well.

35

Chapter 2. Literature review

2.2 Approaches adopt frequent item sets mining (FIM) for
visual problems

Association analysis is an approach for discovering interesting relationships between
object hidden in large data set, which was initially applied to the market basket data for
finding patterns existing within the sales of the products. This method help the shop
to find the new opportunities in cross-selling like making a promotion of their products
to the customers. Association analysis is first proposed as an association rule mining
algorithm by Agrawal et al. [34]. Subsequently, Apriori algorithm and frequent itemset
mining (FIM) is then proposed in Agrawal and Srikant [126], as a fast implementation
of such algorithm, which is a widely used in pattern analysis at that time and also still
very famous until now. Thereby, many researchers were attracted into this research
field on mining association rules. Several approaches to improve this algorithms, e.g.,
Apriori-Hybrid and algorithm by Agrawal et al. [34], fuzzy association rule algorithm
by Kuok et al. [127], FP-Growth algorithm by Han et al. [128] and the improved of its
implementation by Borgelt [129, 130], linear time closed itemset miner (LCM) by Uno
et al. [36, 131, 132], approximate frequent itemset mining by Yu et al. [133], Krimp
for mining the compressed itemsets by Vreeken et al. [134] that is based on minimum
description length (MDL) algorithm [135], etc.

Well-known FIM algorithms include FP-growth [128–130] , which achieves logarithmic
computational complexity against the number of transactions but requires exponential
memory complexity, and LCM [36, 131, 132] , which runs in linear computational com-
plexity along with linear memory complexity. FIM tools are pervasively used for finding
patterns in transactions of customers buying things from super market. In case of so
many customer, the permutation of items through each basket can be quite pervasive,
and can be too huge to be tackle by a limited set of computing resources. The example
of the permutation of a very small items can be seen in figure 2.5.

However, we do not have to find all item sets, as the pattern can be overlapped and the
core patterns can be raised in the item appearance frequency. Therefore, we can try
to extract only the core pattern by using the introduced parameter, namely, minimum
support. This parameter then served as an important for FIM, as the minsup threshold,
for ensuring only the item sets that have a relatively fraction larger than the minimum of
transactions are generated. By doing this, the number of patterns can be limited, to be
able to control the quality of the output of FIM algorithm. In addition, [136] proposed
an optional maximum constraint as calling as maxsup as for limiting the upper bound
for the generated patterns to be discovered with maximum fraction of transactions. By
setting both minsup and maxsup together, the pattern will be more focus on only a

36

Approaches adopt frequent item sets mining (FIM) for visual problems

Figure 2.5: The example of the item sets permutation as a hasse diagram shows the
permutation of the item a,b,c,d,e can be large as 2n − 1 as n is the total number of
items. And the patterns can be much larger as increasing n. Taken from Borgelt [137]

specific patterns. Or even to control the output for judging multiple items with different
criteria, the minsup and maxsup can be set with different ranges for multiple focuses of
the generated patterns.

FIM has begun to be applied to the problems involving image feature earlier just a
bit after BoVW has been introduced. The work of Quack et al. [138] proposes a way
to construct a group of features by using a mining technique to detect an object that
frequent and distinct. Nowozin et al. [139] proposes a graph mining for sub-structuring
graph as a tool of image analysis. Action recognition is also being integrated with data
mining technique on a its dense-feature as proposed by [140]. And also, the efficient way
to used FIM on image classification problem, by Fernando et al. [141].

In another expect, FIM can also be integrated on multiple images as to utilize the
context of other perspectives. With the use of multiple images, FIM can provides the
meaningful co-occurring visual word patterns as object co-occurrences among multiple
images or even video frames. In the context of multiple images or videos, and FIM has
been used in video mining [142], visual phrase mining [121], mining of multiple queries
[143], and mining for re-ranking and classification [144]. FIM is also reported to be
able to find unambiguous spatially visual meanings [121]. However, FIM requires fine
tuning of a sensitive parameter, namely, minsup. Most of the aforementioned methods
heuristically assign a fixed minsup value or predefined number of patterns depending
on the dataset. In contrast, we present an automated algorithm for tuning minsup and
maxsup values on-the-fly in a way that depends on each individual query (see section ??).

37

Chapter 2. Literature review

2.3 Evaluation procedure

True

positives

False

positives

False

negatives

True

negatives

Relevance images

Retrieved images

Precision = =

Recall = =

How many retrieved

images are relevant?

How many relevant

images are retrieved?

Figure 2.6: The precision and recall demo graphic of an image retrieval problem.

Performance evaluation through out this work is measure in term of retrieval quality
for each single query by using a precision term of the precision-recall. An illustration
of precision-recall is shown in figure 2.6. Precision is defined as the proportion of true
positives in the retrieved images; recall is the ratio of retrieved true positives to the
total number of positives for the query. In simple terms, precision measures the purity
of the retrieved list, while recall measures what fraction of the total number of known
positives is discovered.

Certain applications, like Google Goggles or Mobile visual search, which try to answer
the question as only a recognition problem, are only interested in maximizing precision
for obtaining a single correct result. For such applications, a useful performance measure
for a single query is at precision@1, means the top first one is needed to be perfected.
Large recall is also commonly required, for example 3D reconstruction requires a large
number of relevant images in order to build an accurate 3D model. The corresponding
measure for a collection of queries is the mean average precision (mAP).

38

Chapter

3
Query Bootstrapping: A Visual
Mining based Query Expansion

“I have not failed. I’ve just found 10,000 ways that
won’t work.”

— Thomas A. Edison

BoVW framework [9] is inspired from the tradition BoW work [6] and thus, there are
many reasons that leads to the retrieval fail such as some keyword is missing. The
example is that, a given query is provided with slightly different keyword, or a query
contains too noisy of unimportant words (background clutter). Thus, the retrieval result
will be directly affected from this. The same problem of BoW can be merely translated
to BoVW, for example, the image query is provided with some object occlusion, or
different camera angle, so the quantized visual words will be imperfect, slighly shift to
the other words, and the result will be somewhat different. To help this problem, Salton
and Buckley [31] proposed a blind relevance feedback where top retrieved results will
be regards as relevances, and then it will be feed back as a second round query. The
algorithm is expecting that, the missing keywords can be found from the other results
which will be used in fulfilling of the missing part for the next round search.

Adapt to the visual search task, Query expansion [32] is a form of blind relevance
feedback that work with image. for building a richer model of the query object and
reissue the improved query. However, the word orders are lost in representing each

39

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

inlier = 10

inlier = 7

inlier = 8

inlier = 7

inlier = 6

inlier = 14

(a)

inlier = 4

inlier = 3

inlier = 2

inlier = 2

inlier = 2

inlier = 10

(b)

Figure 3.1: The problem of AQE when verifying relevant images using a provided
query. (A) A normal query image with the verified number of inlier. (B) A low resolu-
tion of query image leads to lower number of the inlier, as in red, the relevant images

has inlier count lower than the threshold (i.e., an inlier threshold is 4).

sentence during a BoW construction using a vector space model. Thereby, the problem
of Bow is also inherited to BoVW as well. Chum et al. [32] presents a way to utilize the
spatial information from the images. This work is named as Total Recall that try to
improve the recall based on relevance feedback technique presented in [31] by using the
average tf-idf vector of the query and the retrieved images. Additionally, the retrieved
images are spatially verified with the query image by LO-RANSAC [33] in priori to
perform the second round query. This technique is then becoming a standard of average
query expansion (AQE).

AQE may help improves a recall as the technique can discovers some missing but infor-
mative keywords from the relevant images. However, in the case of a query itself is not
quite clear describing on the target object, either by the camera angle is slightly shift or
even the target object got occluded on its most part, constraining a verification by using
this query will give much lower of an inlier count that yields too many false negative of
such verification as shown in figure 3.1.

40

Motivation

Figure 3.2: The illustration of a second-round query representing an object mined
from multiple relevant images by using our method.

3.1 Motivation

AQE may fails with either an insufficient query quality or the retrieved images itself.
The actual cause might be from one or both sides, but the result is the same as a
verification fail and losing of tentative inlier counts (see Fig. 3.13b). Therefore, our aim
is to relax this verification constraint by using the other ways around. The key idea is to
use the object consistency among the relevant images itself (see figure 3.3) as to reduce
the strong dependency from the query image.

By this reason, a data mining tool namely frequent itemset mining (FIM), which orig-
inally aims at finding regularities pattern in the shopping behavior of the customers of
supermarkets, is a good candidate tool in finding regularities pattern within our the
relevant images.

Figure 3.3: The idea is to use the object consistency among the relevant images itself
as to relax the strong dependency from the query image.

41

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

3.2 Propose approach

We propose an integration of data mining technique for visual based query expansion,
namely, Query Bootstrapping (QB for short). The key idea is to use the consistency
among highly ranked images, instead of using only the pairwise consistency between the
query and each of the ranked images.

We regard frequently co-occurring visual words in highly ranked images as relevant. We
use frequent itemset mining (FIM) by Uno et al. [36, 131, 132] to efficiently find co-
occurring visual words in highly ranked images. FIM outputs frequent patterns, each
of which is composed of a set of visual words, that co-occur frequently in the top-k
highly ranked images, and reported to be unambiguous spatially visual meanings [121].
We then use the visual words appearing in the frequent patterns to formulate the next-
round query by averaging together BoVW histograms of the original query and highly
ranked (optionally geometrically verified) images with only the visual words appeared
in the frequent patterns. Example of second-round queries are illustrated in figure 3.2,
with back projecting image segments of highly ranked images that contain visual words
corresponding to frequent patterns into the original query space.

3.2.1 Design

First-round Query

(tf-idf)

FIM Binarizer
Second-round Query

(tf-fi-idf)

Support value

Search

B2T: A conversion from a BoVW to a transaction database.

B2T

B2T

Selected Top-k

VWs patterns fi
x

tf-idf
BoVW Aggregator

Rank

List 1

Adaptive Support

Tracer

BoVW QE QB

Figure 3.4: A framework overview of our Query Bootstrapping (QB)
(scaled-up version see figure 3.5).

The architecture of our QB is designed as in the figure 3.4, by adding the mining compo-
nents (in red) to a general query expansion (QE) framework (see figure 3.4). The mining
components of our QB framework are frequent itemset mining (FIM) (section 3.2.2),
adaptive support tracer (ASUP) (section 3.3), and the bag-of-visual-word integration
(section 3.4). To handle the retrieved images by using FIM, we employed such mining
components to process images separately from a general QE components. Then, QB will
process and output the frequently co-occurred visual words (fi) as a result. Finally, QE
and QB will merge the result for making a representative second round query. Note that,
this framework has no process of spatial verification, which means to fully disconnect
the highly query dependency as exists in AQE.

42

Propose approach

F
irst-ro

u
n
d
 Q

u
ery

(tf-id
f)

F
IM

B
in

arizer
S

eco
n
d

-ro
u
n
d
 Q

u
ery

(tf-fi-id
f)

S
u
p
p
o
rt v

alu
e

S
earch

B
2T

: A
 co

n
v
ersio

n
 fro

m
 a B

o
V

W
to

 a tran
sactio

n
 d

atab
ase.

B
2T

B
2T

S
elected

 T
o
p
-k

V
W

s p
attern

s
fi

x

tf-id
f

B
o
V

W
A

g
g
reg

ato
r

R
an

k

L
ist 1

A
d
ap

tiv
e S

u
p
p
o
rt

T
racer

B
o
V

W
Q

E
Q

B

F
igure

3.5:
A

fram
ew

ork
overview

ofour
Q

uery
B

ootstrapping
(Q

B
)

(B
ig).

43

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

1

1

2

2

2

3

3

3

3

7

4

4

8

78

3
4

8
1

1

1

2

2

2

3

3

3

3

7

4

4

8

78

3
4

8
1

FIM

I1 i2 i3 i4 i5 i6 i7 i8 i9

Img. Ik Transaction tk

I1 t1 = {i1 ,i2 ,i4 ,i6}

I2 t2 = {i2 ,i5 ,i8}

I3 t3 = {i2 ,i3 ,i9}

I4 t4 = {i1 ,i2 ,i4 ,i7}

I5 t5 = {i2 ,i3 ,i8}

T

Pattern support

{i2} 60%

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

{i3 ,i8} 20%

{i1 ,i4 ,i7} 20%

{i2 ,i3 ,i9} 20%

{i2 ,i5 ,i8} 20%

{i1 ,i2 ,i4 ,i4} 20%

P

BoVW example

Figure 3.6: The illustration of the conversion from images that represented by BoVW
to transactions of visual words collection, which are used as the inputs for a frequent
itemset mining tool. The output patterns can be seen as co-occurrence of visual words

as the object level configurations.

3.2.2 Method

In order to apply FIM to a ranked list of images, considering as a general FIM tool need
to process data in a form of transactions and items as a market basket data. Firstly,
we need to convert the list of images into a set of transactions. In this experiment, we
regard only top 25 images to be used in FIM process. Therefore, each image in the list is
regarded as a transaction, the quantized visual words as its items, and the set of images
in the list as a set of transactions as known as a transaction database. The process of
converting images to transactions, namely, we call this as a BoVW to transaction or
B2T procedure, (see figure 3.6(left)). Given such a set of transactions, FIM outputs
frequent patterns (see figure 3.6(right)) corresponding to frequently co-occurring visual
words. As in the session 1.3.4, to process the transactions for getting patterns, the
parameter namely, minimum support, is necessary to be specified. For example, the
default parameter for FIM is usually minsup = 10%, which will produce all patterns
that have support more than or equal to 10%. The example of tunning a minimum
support parameter and its corresponding output can be seen from a toy example output
in figure 3.7.

3.2.3 Evaluation

According to the FIM process, we need to set the support parameter for each retrieval,
that is, it is impossible to set the support parameter separately on each query topic.

44

Propose approach

Pattern support

{i2} 60%

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

{i3 ,i8} 20%

{i1 ,i4 ,i7} 20%

{i2 ,i3 ,i9} 20%

{i2 ,i5 ,i8} 20%

{i1 ,i2 ,i4 ,i4} 20%

Pattern support

{i2} 60%

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

Pattern support

{i2} 60%

(a) minsup = 10% (b) minsup = 35% (c) minsup = 60%

Figure 3.7: The pattern outputs example corresponding to the specified minimum
support, as to guarantee the minimum fraction of transactions to be covered. The total
pattern calculated from a toy example from a figure 3.6. (a) setting minsup to 10% will
produce all 9 patterns. (b) setting minsup to 35% will produce 4 patterns. (c) setting

minsup to 60% will produce only 1 patterns.

Therefore, in this early experiment, we fixed the same support value equally on each
query topic. Also, we evaluate it with different minimum support value from 5 to 95
and then run it in a batch mode for the following evaluation seen in figure 3.9.

The evaluation result of our QB in a figure 3.9 shown that each query has its top
performance differently upon the designated minimum support. And the mAP for this
evaluation is reported in figure 3.8. Due to the patterns output that belonging to each
of relevant lists are not the same, regarding to its co-appearances of the visual object on
each images, therefore, setting a global fixed support seemed not to be a good solution
for our situation.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

m
A

P

Support value

Fixed support [Oxford 5k]

Fixed Support

Figure 3.8: The figure shows the global mAP for each fixed minimum support value
on an Oxford 5k dataset. The performance seemed to be at the highest when setting a

fixed minimum support to 20%.

45

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55 65 75 85 95

all_souls_1

all_souls_2

all_souls_3

all_souls_4

all_souls_5

ashmolean_1

ashmolean_2

ashmolean_3

ashmolean_4

ashmolean_5

balliol_1

balliol_2

balliol_3

balliol_4

balliol_5

bodleian_1

bodleian_2

bodleian_3

bodleian_4

bodleian_5

christ_church_1

christ_church_2

christ_church_3

christ_church_4

christ_church_5

cornmarket_1

cornmarket_2

cornmarket_3

cornmarket_4

cornmarket_5

hertford_1

hertford_2

hertford_3

hertford_4

hertford_5

keble_1

keble_2

keble_3

keble_4

keble_5

magdalen_1

magdalen_2

magdalen_3

magdalen_4

magdalen_5

pitt_rivers_1

pitt_rivers_2

pitt_rivers_3

pitt_rivers_4

pitt_rivers_5

radcliffe_camera_1

radcliffe_camera_2

radcliffe_camera_3

radcliffe_camera_4

radcliffe_camera_5

Figure 3.9: The performance evaluation in detail (locally) of various minimum support
setting on an Oxford 5k dataset shows the best performance for each query can be

achieved with different support value.

46

Globally best with local optimized support parameter

Pattern support

{i2} 60%

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

{i3 ,i8} 20%

{i1 ,i4 ,i7} 20%

{i2 ,i3 ,i9} 20%

{i2 ,i5 ,i8} 20%

{i1 ,i2 ,i4 ,i4} 20%

Pattern support

{i2} 60%

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

Pattern support

{i3} 40%

{i8} 40%

{i1 ,i4} 40%

(a)

minsup = 10%

maxsup = 90%

(b)

minsup = 30%

maxsup = 70%

(c)

minsup = 35%

maxsup = 45%

Figure 3.10: The pattern outputs example corresponding to the specified minimum
support and maximum support, as to guarantee the minimum fraction of transactions
to be covered and not larger than a maximum fraction of transaction to be covered.
The total pattern calculated from a toy example from a figure 3.6. (a) setting minsup
to 10% and maxsup to 90% will produce all 9 patterns. (b) setting minsup to 30% and
maxsup to 70% will produce 4 patterns. (c) setting minsup to 35% and maxsup to 45%
will produce 3 patterns excluding the pattern {i2}, which has support higher than 60%.

3.3 Globally best with local optimized support parameter

FIM generates patterns under specific constraints on the minimum support. If we seek
too high a support value, we may find patterns which co-occur very frequently in the
top-k images, but may miss patterns (corresponding to target objects) which occur only
moderately frequently. If we set too low a constraint for the support, FIM may generate
too many patterns including background noise with the target objects.

The generation of patterns using minimum support is not enough as Lee et al. [136] sug-
gest that the patterns can include mixtures of different patterns, which may correspond
to target objects, such as buildings, as well as background objects, such as trees. Hence,
their work present a way to use not only the minimum support, but also the maximum
support to control the quality of pattern to be within a desired fraction of transactions
as seen in figure 3.10, which shows that the patterns output can be controlled by both
minsup and maxsup parameter.

47

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

#
 p

at
te

rn

support

Query: “all_souls_2”

0

100000

200000

300000

0 20 40 60 80 100

#
 p

at
te

rn

support

Query: “all_souls_4”

0

5000

10000

15000

0 20 40 60 80 100
#

 p
at

te
rn

support

Query: “christ_church_2”

0

200

400

600

800

1000

0 20 40 60 80 100

#
 p

at
te

rn

support

Query: “all_souls_1”

Figure 3.11: Plot of the number of patterns versus support reflecting the monotonicity
property of the FIM principle for four different queries. The optimal support parameter

is at the maximum number of patterns.

3.3.1 Motivation

Manually setting a support parameters perfectly is hard due to we cannot know the
query image in advanced, so assigning a type of a query image for setting a support
parameters is not possible. Therefore, we then learn from the experiences by running
FIM on each query to check all the possible outputs providing with FIM tools, and we
found one interesting value that has quite good relationship to the final mAP. This value
is the number of pattern as the count of total of patterns after FIM has discovered. We
conduct the experiment considering with intervals for support values. These intervals
are the set of the range of [minsup,maxsup] between 5-95% of support. Therefore,
we assign these set as [5-10], [10-15], [15-20],...,[90-95]. then processes FIM according
to the specified intervals. FIM will return the number of patterns together with the
actual patterns We plot the number of pattern with the different support value ranges,
as result, the figure 3.11 shows us a very interesting distribution according to the work
in [136] that the patterns can be a mixture of different objects. However, our task is
mainly focus on retrieving one object, as the result of our plots shown in the figure 3.11.
As our observation on the plots, we make the assumption that a target object will alway
shape the pattern into a unimodal distribution, for each unique query and the pattern
around the dense area is what we need.

48

Globally best with local optimized support parameter

3.3.2 Method

In order to fine tune a support value for FIM according to our description in the previous
section 3.3.1, we propose an adaptive support tuning algorithm, namely, ASUP, as to
adaptively set the support parameter independently for each query. Accordingly, we can
determine minsup and maxsup to be the support values corresponding to the maximum
number of patterns, as shown in figure 3.11.

FIM restricts the output patterns to those having support values between minsup and
maxsup. FIM takes two parameters, namely, minsup and maxsup, which restrict output
patterns having support value between them (see figure 3.10). the pseudo code of our
proposed adaptive support tuning algorithm (ASUP) algorithm is as follows:

Algorithm 1 Adaptive Support Tuning Algorithm
Require: T ← B2T (R)

1: procedure Support tracer
2: b sup← 0, n sup← 100
3: loop: b sup < n sup
4: s← b sup ;(s as minsup)
5: S ← s+ 5 ;(S as maxsup)
6: P count[s]← ||FIM(T, s, S)||
7: b sup← b sup+ 5
1: procedure Optimal support selection
2: opt s← P countmax.idx× 5
3: opt S ← opt s+ 5
4: return opt s, opt S

In addition, FIM tools proposed by Uno et al. [36, 131, 132] (LCM) and Borgelt [129, 130]
(FP-Growth), both have two operation modes. In one mode, it finds closed frequent
itemsets which include all patterns greater than or equal to minsup. In the close itemset
mode, the discover patterns can be rather large, even it is already small. On the other
mode, it can finds maximal frequent itemsets, which are those of its immediate supersets
are frequent. In the maximal itemset mode, the discover patterns can be very compact
describing only the un overlapped pattern. Thus, the closed frequent itemsets mode
tends to be slow especially when the number of patterns is large, while the maximal
frequent itemsets mode runs very fast, and give only rough pattern.

To determine the optimal minsup and maxsup, we scan pairs of possible minsup and
maxsup values with a fixed interval between them and inspect the number of patterns
using FIM in maximal frequent itemsets mode. The minsup and maxsup pair yielding
the maximum number of patterns are determined to be optimal. Finally FIM is then
run in the close itemsets mode with the optimal minsup and maxsup to generate actual
patterns. Note that using both minsup and maxsup help to improve the quality of

49

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

generated patterns on an exact frequent object hence contributes to the final retrieval
performance, and faster since there are no need to discover unnecessary patterns outside
this min/max support boundary.

3.3.3 Evaluation

Here, we compared the performance in terms of mAP based on QB + SP (chapter 4)
on Oxford 5k for two different settings, one using a fixed minsup for all queries, and
another using the adaptive support algorithm to adaptively select minsup and maxsup
for each query. Figure 3.12 shows the results of this test. And as the result, support
value had a strong impact on the final performance of Oxford 5k, and the best fixed
support for Oxford 5k dataset was around 20-30 (blue line).

However, our adaptive support algorithm (ASUP) performed much better precision (red
line) than the non-adaptive version (fixed support). Also, our adaptive support algo-
rithm can serve much better variance (lower is better) among the different query, since a
support parameter will be locally optimized for each query independently for performing
the overall highest global performance.

The key successful of our ASUP algorithm is that, a support parameter will be locally
optimized for each query yields a highest global performance as shows in figure 3.12.

This step assumes that given first round retrieval results are dominated by relevant
images which contain target objects. Unfortunately, as Fig. 3.17 implies, this is not
always the case. Otherwise FIM as well as parameter determination algorithm explained
here may not work well. To cope with this problem, we can optionally employ spatial
verification that we will explain in chapter 4.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

m
A

P

Support value

Fixed vs. Auto support [Oxford 5k]

Fixed Support Auto Support

Figure 3.12: Retrieval performance of QB + SP on Oxford 5k dataset comparing the
impact of a fixed support (blue line) and adaptive support (red line). The 1st and the
3rd quartile bar show that the adaptive method achieves lower variances among queries.

50

Integrating Query Bootstrapping to a BoVW

3.4 Integrating Query Bootstrapping to a BoVW

Up to now, we did used the result of our proposed QB and the adaptive support tuning
algorithm as the frequent itemset guidance with the existing BoVW framework. How-
ever, in this session, we will explain how we applied this mining result to the standard
BoVW framework.

FIM output result as the pattern of co-occurrence object among images, in order to
incorporate the set of patterns obtained by FIM, we simply convert these visual word
patterns into the weight that can be easily multiplied to the BoVW histogram. And in
this early version, we simply binarize the pattern together as the visual word occurrences
that directly come from a frequent itemsets (fi).

In order to utilize this fi weight, we extend the tf-idf weight for each quantized visual
word by giving it the aforementioned binary term fi to the QE BoVW term as from the
equation 1.5. fi is 1 if the corresponding visual word appears in any pattern in the set
of patterns, and is 0 if the corresponding visual word does not appear in the set. The
final weight, tf-fi-idf tf-fi-idf , is defined as follows:

tf-fi-idf =fi × tf-idf (3.1)

Note that by setting all fi to 1, we obtain the standard query expansion.

3.5 Results

By integrating our proposed mining components on top of standard query expansion
framework, our QB result shows the prominence performance as the overall mAP are
reported in figure 3.12.

In this session, we select the examples of the result to show the advantage of using QB
and additionally with adaptive support tuning algorithm (ASUP).

As our main objective of proposing QB is to relax the strong constraint over the query
that may caused the spatial verification fail e.g., occlusion. So, the example case that
the verification fail with the occlusion is shown in figure 3.13, while our QB utilize
the object co-occurrences among relevant images, with the matching result shows the
context keypoints were discovered through multiple images as shown in figure 3.13c.

51

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

(a) Query image

(b) Matching from AQE

(c) Matching from QB

Figure 3.13: The example shows the matching points between query image and the
reference image on the (a) A query image with its detected keypoints. (b) AQE lost
several match keypoints due to the targeted object was partially occluded by a human.

(c) QB got help by finding co-occurrence context outside of the target object.

52

Results

For the burstiness problem, we show the comparison example between AQE and our QB
in figure 3.15. As result, it shows that, by using maxsup we can remove those matches
that highly appeared individually on each image, buy these match do not have much
relationship to the target object. So, this results to better relevant matches with less
burstiness problem.

And for the quantization error problem, we also show the comparison example between
AQE and our QB in figure 3.16. As result, it shows that, some quantization error of the
visual words are appeared on AQE matching results, how ever, our QB matching result
shows much better relevant matched between images.

In some cases that the first round retrieved images were dominated by the irrelevant
object, our QB will produce the result much worst than using AQE. For example in the
figure 3.17, we show the retrieved images using standard BoVW (figure 3.17b) and our
proposed QB method. As result, the within top 10 images of standard BoVW, there are
only 7 true positive images were retrieved. However, in this experiment, we regard top
25 images as relevances and feed all these 25 images to QB. It means that, all the rest 18
images are irrelevance that dominated the result. Hence, FIM find the patterns respect
to the other object (tree) rather than the target object (building), which finally lead to
the negative impact of the second round result. We also conduct the experiments to
show the more irrelevant images are include (top-k), the more noise in mining pattern
using FIM, as reported in figure 3.14

25 50 75 100

AQE 87.73 88.01 87.99 88.11

QB 86.41 83.20 79.12 74.23

50

55

60

65

70

75

80

85

90

95

100

O
x

fo
rd

 5
k

 m
A

P

top-k

AQE

QB

Figure 3.14: The mAP comparison between AQW and our proposed QB shows the
QB performance is decreasing when increasing the top-k relevant images.

53

Chapter 3. Query Bootstrapping: A Visual Mining based Query Expansion

Figure 3.15: Burtiness matching between a database image and a query shows that
our QB + SP (right column) gives better relevant words, while AQE (left column)

yields irrelevant tentative matches in some cases.

Figure 3.16: The matching between a database image and a query shows that our
QB + SP (right column) gives better relevant words, while AQE (left column) yields

irrelevant tentative matches in some cases.

54

Results

(a)
Q

uery
im

age

(c)
Top

10
relevant

im
ages

retrieved
(A

P
=

100%
)

by
B

oV
W

and
its

top
100

true
positive

list
in

green.

(e)
Top

10
relevant

im
ages

retrieved
by

Q
B

(A
P

=
9%

)
and

its
top

100
true

positive
list

in
green.

F
igure

3.17:
Exam

ple
ofQ

B
failure

w
hen

im
ages

retrieved
in

the
first

round
w

ere
dom

inated
by

another
object

(a
tree)

rather
than

the
target

query
(a

building).
W

ithout
a

spatialverification
for

the
query

object,Q
B

produces
a

result
closer

to
the

dom
inated

one.

55

Chapter

4
Query Bootstrapping extended

“We have to continually be jumping off cliffs and
developing our wings on the way down.”

— Kurt Vonnegut

Figure 4.1: The image comparing AQE and QB + SP with the internet meme.
(top) AQE as a boss to control the verified VWs for making a 2nd query.

(bottom) QB as a leader with hints from SP to make a 2nd query using verified images.

57

Chapter 4. Query Bootstrapping extended

We proposed a method, namely, Query Bootstrapping (QB) in chapter 3, as the variant
of QE that is to use the consistency among highly ranked images, instead of using only
the pairwise consistency between the query and each of the ranked images. As the
objective is to relaxes the over-dependency over a various abnormally query situation.
QB may be more robust to the degradation and/or variation in the query images.

4.1 Motivation

As the proposed QB as a visual mining for query expansion, we fully disregard the inte-
gration of spatial verification which is integrated in AQE and caused the aforementioned
problem as described in section 3.5. We found the problem exists when the top-k rank
got dominated on the retrieved images from the first round BoVW which may partially
contains just part of object that visually look similar. This problem leads to the bad
experience of our QB. In this context, FIM will find the most correspondence object out
of the selected top-k images. And in case of such top-k list got dominated by irrelevant
object the result of FIM will be totally different from our expect. There is a meme from
the internet about the behaving like a leader is better than behaving like a boss; a boss is
who commands the worker with only his own power, however, a leader is who lead their
team with his guidances. Comparing to AQE vs. QB as in the figure 4.1, we shown that
our QB is as a leader who listen to the boss (SP) to guide their team (verified images),
for better in cooperation among all of them.

Q1

R1

R2

R3

R4

R5

R6

R7

QB Q2

R1

R3

R4

R6

SP

Figure 4.2: An illustration when QB takes an images verified by using SP module.

58

Propose approach

Figure 4.3: The projective transformation example shows the coordinate are trans-
formed into different result according to the specified transformation parameters. The

figure was taken from [145].

4.2 Propose approach

Therefore, in this chapter, we propose a way to bring back spatial verification method
as to give hint on which target object should be focusing on during a mining step for
QB. Our method shows the way to properly integrate spatial verification (SP) method
as shown in the figure 4.2 that meant only the relevant images in term of visually similar
of its object spatial information will be selected and be processed by our QB.

We regards the spatial coordinate (x,y) as key information for objects to be verified as
relevant. By employing LO-RANSAC to calculate the homography matrix 1, which is a
linear projective transformation relating two images, and verify if the translated coordi-
nate is inlier between two images using a pinhole camera model . So, the homography
matrix is defined as follows.

General homography matrix:
x′

y′

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1

 (4.1)

Translation: 
x′

y′

1

 =


1 0 tx

0 1 ty

0 0 1



x

y

1

 (4.2)

Scaling: 
x′

y′

1

 =


sx 0 0
0 sy 0
0 0 1



x

y

1

 (4.3)

1More details is summarized in the lecture of Fei-Fei [145]

59

Chapter 4. Query Bootstrapping extended

Rotation: 
x′

y′

1

 =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1



x

y

1

 (4.4)

Shearing: 
x′

y′

1

 =


1 shx 0
shy 1 0
0 0 1



x

y

1

 (4.5)

where x, y is the coordinate for one image, x′, y′ is the coordinate for another image, and
h11...h33 are the parameter for transforming the coordinate, which will result to trans-
form an image as specified degree of freedom, e.g., translate (eq. 4.2), rotate (eq. 4.4),
(eq. scale 4.3), shear (eq. 4.5), affine, and perspective and the transformation result is
shown in the figure 4.3. Hence, the any points between images that have no or less
error (on the euclidean space) after being transformed using the calculated homography
matrix are called as inliers.

4.2.1 Design

First-round Query

(tf-idf)

FIM Binarizer
Second-round Query

(tf-fi-idf)

Support value

Search

B2T

B2T

Selected Top-k

Verified Top-k (< k)

VWs patterns fi
x

tf-idf
BoVW Aggregator

Rank

List 1

L
O

-R
A

N
S

A
C

 T
o

p
-k

 V
er

if
ie

r

Verified

Rank

List 1

Adaptive Support

Tracer

Spatial Verification B2T: A conversion from a BoVW to a transaction database.

BoVW QE SP QB

A
u

to
m

at
ic

 I
n

li
er

 T
h

re
sh

o
ld

Figure 4.4: A framework overview of our Query Bootstrapping (QB) with an inte-
gration of spatial verification module using RANSAC (SP)

(scaled-up version see figure 4.5).

In order to employ SP to our QB properly, we add the SP components (in yellow) in
prior to our main mining components (in red) to filter out the irrelevant images in prior
to the mining process, which result to a compatible to the designed architecture of our
standard QB (in section 3.2). We called our extended QB architecture as QB + SP or
easily as QBSP (QB combined with optional spatial verification), which is illustrated in
the figure 4.4.

60

Propose approach

F
irst-ro

u
n

d
 Q

u
ery

(tf-id
f)

F
IM

B
in

arizer
S

eco
n

d
-ro

u
n

d
 Q

u
ery

(tf-fi-id
f)

S
u

p
p

o
rt v

alu
e

S
earch

B
2T

B
2T

S
elected

 T
o

p
-k

V
erified

 T
o

p
-k

 (<
 k

)

V
W

s p
attern

s
fi

x

tf-id
f

B
o

V
W

A
g
g
reg

ato
r

R
an

k

L
ist 1

LO-RANSAC Top-k Verifier
V

erified

R
an

k

L
ist 1

A
d

ap
tiv

e S
u

p
p

o
rt

T
racer

S
p

atial V
erificatio

n
B

2T
: A

 co
n

v
ersio

n
 fro

m
 a B

o
V

W
to

 a tran
sactio

n
 d

atab
ase.

B
o

V
W

Q
E

S
P

Q
B

Automatic Inlier Threshold

F
igure

4.5:
A

fram
ew

ork
overview

ofour
Q

uery
B

ootstrapping
(Q

B
)w

ith
an

integration
ofspatialverification

m
odule

using
R

A
N

SA
C

(SP)(B
ig).

61

Chapter 4. Query Bootstrapping extended

The overview process of our QB + SP framework works from left to right of the figure 4.4
as follows.

1. BoVW is extracted from the given query image and the first round result is re-
trieved with total of k images.

2. Spatial verification step is applied on top-k retrieved images and projected the k′

verified images for the rest of the QB process.

3. QB processes the top-k′ images for finding the correspondent patterns regarding
to the adaptive support parameters.

4. QE aggregates all the top-k′ images together for tf-idf for being ready for directly
multiplied with the fi from the previous step.

5. The second round query is produced as the integration of query expansion + data
mining + spatial verification as our tf-fi-idf .

4.2.2 Method

We use LO-RANSAC for a spatial verification process. LO-RANSAC generates a verified
ranked list from a query image and the images in the retrieved list. LO-RANSAC
actually finds the maximum number of point pairs between given two images that are
geometrically consistent in the way relying on a homography matrix . Such point pairs
are called inliers. In order to verify which image is an inlier, images having more inliers
than a threshold are called verified images, while the rest will be counted as outlier
images. This threshold is set as a criteria for filtering relevant images comparing to the
inlier count calculated from such image.

In this step, we do not know how much inlier threshold we should set. Although, as
general knowledge, the higher threshold will result to refine much higher quality of
relevant images, there are the cases where we cannot find any survived relevant images
that has an inlier count higher than the threshold. The reason might be because of the
query image itself and/or together with the retrieved image, such as the view angle is
different, the target object is small, occlusion etc. , that caused the low number of inlier
count contrastingly to what we expected.

62

Propose approach

4.2.3 Evaluation

Therefore, our first experiment for this is to evaluate our QBSP comparing to AQE at
each fixed inlier threshold. We set the inlier threshold into 5 values, e.g., 3, 5, 7, 9, and
11. We tested the experiments with the dataset Oxford 5k, 105k, and Paris 6k. So,
there are 825 runs for each approach, and 1,650 run in total. The result is reported
in the figure 4.6, which shows the performance result comparing to the different inlier
threshold. By setting this inlier threshold too low can drop the performance for QBSP.
On the other hand, setting this inlier threshold too high might not achieved the best
performance on QBSP as well. For the AQE result, on the Oxford 5k dataset, setting
this threshold higher caused a little drop of the retrieval performance. On the Oxford
105k dataset, setting this threshold higher will increase a little performance. And on
the Paris 6k dataset, setting this threshold higher will drop the performance as well
as QBSP did on this dataset. Therefore, in this section, we cannot conclude the best
criteria for setting such threshold, since setting this threshold will not produce the same
effect of retrieval result on different dataset.

However, generally, several existing approaches try to set this threshold manually ac-
cording to their experiences, or until they found the result is good enough, then the
threshold will be used in every verifications through all the datasets.

63

Chapter 4. Query Bootstrapping extended

3 5 7 9 11

AQE 88.11 88.60 87.87 87.32 87.13

QB+SP 74.39 85.47 92.48 91.64 90.77

50

55

60

65

70

75

80

85

90

95

100
O

x
fo

rd
 5

k
 m

A
P

Inlier threshold

AQE

QB+SP

3 5 7 9 11

AQE 79.69 80.72 81.86 81.15 80.85

QB+SP 50.95 68.44 89.31 88.28 87.56

50

55

60

65

70

75

80

85

90

95

100

O
x

fo
rd

 1
0

5
k

 m
A

P

Inlier Threshold

AQE

QB+SP

3 5 7 9 11

AQE 80.44 80.13 79.19 78.87 78.70

QB+SP 89.66 89.32 87.76 86.62 85.88

50

55

60

65

70

75

80

85

90

95

100

P
ar

is
 6

k
 m

A
P

Inlier Threshold

AQE

QB+SP

Figure 4.6: The evaluations of different inlier thresholds tested with AQE and QBSP.
There are 5 thresholds for the experiments running on 3 standard datasets (Oxford
building 5k, 105k, and Paris landmark 6k). The figure shows setting different inlier
threshold can result to different retrieval performance. Setting the parameter too low
can drop the performance for QBSP. Setting the parameter too high might not achieved
the best performance on QBSP as well. Also, the criteria for of setting the threshold

are not affect to the same result on different dataset.
64

On-the-fly selecting inlier threshold

0

100

200

300

400

500

600

700

800

900

1 11 21 31 41 51 61 71 81 91

In
li

er
 c

o
u

n
t

Ranked list

Figure 4.7: The plot of raw inlier counts that evaluated by using LO-RANSAC on a
sample ranked list.

4.3 On-the-fly selecting inlier threshold

As we know, too tight of an inlier threshold may generate very few (or no) verified images,
while too loose of an inlier threshold is equivalent to no spatial verification. Thereby, in
this section, we propose an algorithm to adaptively tune this inlier threshold on-the-fly
depends on how we see the result and how each ranked got the number of inlier count
using LO-RANSAC. We named it as an Adaptive Inlier Threshold (ADINT) . According
to the raw number of inlier we got from a ranked list as in figure 4.7,m which has a direct
relationship to the rank of image. We assume that images having target objects tend
to have large numbers of inliers, while images without target objects tend to have few
inliners. So, from this observation, we target the new objective for clustering images
into 2 groups, as an inlier image group, and an outlier image group, or aim to filter out
irrelevant images by using its correspondent inlier count.

4.3.1 Motivation

Manually setting an inlier threshold for RANSAC-like method is done widely by several
approaches. In case of easy and clear to recognize the object, an inlier count obtained
from each of ranked list will be corresponded to visibility of an object that visually
appeared in an image. Therefore, this imply the relevant images will contain quite high
number of inlier count. In contrast, the lower ranked images are mostly reflect the low
amount of inlier count. By this reason, setting an inlier threshold for filtering relevant
image should not be fixed at some certain value, otherwise, the relevant images might
be regarded as irrelevant if it cannot provide such high number of inlier comparing to
the reference image like a degraded query image.

65

Chapter 4. Query Bootstrapping extended

0

20

40

60

1 10 100 1000

F
re

q
u

en
cy

Inlier count

0

50

100

1 10 100 1000

F
re

q
u

en
cy

Inlier count

0

50

100

1 10 100 1000 10000

F
re

q
u

en
cy

Inlier count

ADINT = 6

ADINT = 5

ADINT = 76

Peak = 4

Peak = 4

Peak = 5

(a)

(b)

(c)

0

50

100

1 10 100 1000 10000

F
re

q
u

en
cy

Inlier count

ADINT = 6

Peak = 5

(d)
ADINT = 148 (fixed)

Large jump detected

82 outliers
18 inliers

84 outliers
16 inliers

93 outliers
7 inliers

88(93) outliers(fixed)
12(7) inliers(fixed)

Figure 4.8: The actual cases of how ADINT finds an inlier threshold. The dots
represents the frequency of each inlier count (shown in log scale). The ADINT ratio
was set to 0.9 (red arc). (a) Blue ellipses show the group of outlier images (left)
and inlier images (right). (b,c) General cases. (d) Special case when ADINT finds a
threshold at the boundary of the outlier group (red-circle dot), which is then fixed to

the inlier group.

4.3.2 Method

Here, we propose an adaptive inlier threshold algorithm, namely, ADINT that adaptively
determines inlier threshold to filter relevant images. First, we use LO-RANSAC to
determine which images in the top-k retrieved images are under a certain inlier count
threshold. Then we construct a frequency histogram (the number of images) of the inlier
count to be processed with the rest of the ADINT algorithm. The example of histograms
are shown in figure 4.8(a)-(b). Generally, images with high inlier counts tend to be the
correct matches (see the right ellipse in figure 4.8(a)), while images with low inlier counts
tend to be outliers (see the left ellipse in figure 4.8(a)). More specifically, outlier images
are usually at a peak on the left side of the distribution, including its neighborhoods and

66

On-the-fly selecting inlier threshold

the images that have lower inlier counts than the peak point. Based on this observation,
our ADINT finds a splitting point for inlier counts as follow:

Algorithm 2 Adaptive Inlier Threshold (ADINT)
Require: inls (as inlier count distribution)

1: procedure ADINT
2: center ← find max(inls)
3: adintratio ← predefined
4: inl← inls[center ∗ adintratio]
5: loop: center.idx < inl.idx
6: a← center − inl
7: b← |center.idx− inl.idx|
8: c←

√
a2 + b2

9: if center ∗ adintratio ≤ c then
10: adint = inl
11: if find large jump ahead(inls, adint) 6= null then
12: adint = find large jump ahead(inls, adint)
13: stop;
14: inl← inls[inl.idx− 1]
15: return adint

In order to determine the inlier threshold between inlier and outlier images, we need
to feed the top-k images to LO-RANSAC to obtain the raw inlier count as shown in
figure 4.7, then we build an inlier histogram as shown in figure 4.8. The algorithm 2 is
then aim to find the splitting point bewteen into two inlier groups, which are a group of
high inlier (as blue dots) that tend to belonging to inlier, and a group of low inlier (as
black dots) that is definitely belonging to outlier. To split it, the algorithm firstly finds a
point in a histogram where the most images are belonging to as a pivot. This pivot point
will be a center point for the following sweeping mechanism. The algorithm determines
the inlier threshold by sweeping clockwise from the right-most inlier count that can be
reached by the radius of 0.9 times the frequency of the center point. The sweeping
process will be done at the point where the radius cuts the histogram, or until it reaches
the inlier count of the center point. Hence, the first point on an inlier histogram that
far beyond this sweeping will be an Adaptive Inlier Threshold. The ratio is introduced,
namely, ADINT ratio, with a typical value of 0.9 for controlling the radius. On the
reason why ADINT ratio for sweeping the inlier count has to be 0.9 in our experiments
is that, We did several trials with this ratio from 0.1 to 0.9 as reported in figure 4.9, And
we found that 0.9 is the most appropriate value that agreed by all datasets to achieve
the best performance.

ADINT works well in most cases. However, when there is only few correct matches in the
retrieved images, we might easily identify inlier counts into two distinct group (see black
and blue points in figure 4.8(c) and (d)). On the other hands, setting an ADINT ratio

67

Chapter 4. Query Bootstrapping extended

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

O
x
5
k

9
1
.2

9
9
1
.0

1
9
1
.5

1
9
1
.1

4
9
2
.1

0
9
2
.3

5
9
1
.8

7
9
2
.8

4
9
3
.1

4

O
x
1
0
5
k

8
8
.7

0
8
9
.7

0
8
9
.8

9
8
9
.9

2
9
0
.3

2
9
0
.2

1
9
0
.0

9
9
0
.7

0
9
0
.6

5

P
aris6

k
8
7
.0

2
8
7
.8

6
8
8
.5

8
8
8
.9

6
8
8
.8

2
8
9
.0

2
8
9
.0

0
8
9
.0

9
8
9
.0

8

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0

0
mAP

A
d
ap

tiv
e In

lier T
h
resh

o
ld

 (A
D

IN
T

)

O
x
5
k

O
x
1
0
5
k

P
aris6

k

F
igure

4.9:
T

he
figure

show
s

several
experim

ents
are

done
on

different
A

D
IN

T
ratio

on
different

dataset.
T

he
plot

show
s

that
A

D
IN

T
ratio

of
0.9

is
the

m
ost

appropriate
value

that
agreed

by
alldatasets

to
achieve

the
best

perform
ance.

68

On-the-fly selecting inlier threshold

to 0.9 might not be enough, and may fail to filter out some irrelevant images as seen in
figure 4.8(d). Therefore, we check whether a threshold was found near a boundary of an
outlier groups, and if so, the threshold will be fixed to a boundary of an inlier group (see
algorithm 2 at line 10 and 11). Figure 4.10 compares the auto-selected inlier images with
the ground truth images found through the retrieved images, by selecting only one query
topic as a sample to show our ADINT result of relevant images selection. The figure 4.10
represents the highly ranked images obtained from the first round retrieval. A blue line
shows an inlier count that obtained from a LO-RANSAC, while a red line shows our
ADINT inlier threshold. For any image that contains inlier count (blue line) higher than
ADINT threshold (red line) will be marked as selected (orange). As result, our selected
images are somehow mostly correct comparing to the ground truth as highlighted with
gray bars.

69

Chapter 4. Query Bootstrapping extended

0 1

0 5

1
0

1
5

2
0

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

Inlier count

R
an

k
 o

rd
er

F
igure

4.10:
T

he
blue

line
show

sthe
totalnum

berofinliersfound
in

the
top

100
im

agesofthe
initialrank

on
the

sam
ple

query
w

ith
a

baseline
A

P
of30.14%

.
T

he
gray

bar
show

s
the

true
positive

im
ages

appearing
in

the
ranked

list,w
hereas

the
orange

bar
show

s
im

ages
selected

by
our

adaptive
inlier

threshold
(A

D
IN

T
)

seen
in

a
red

line
that

yielded
a

finalA
P

of82.07%
.

70

Results

Ox5k Ox105k Paris6k Ox5k Ox105k Paris6k

3 88.11 79.69 80.44 74.39 50.95 89.66

5 88.60 80.72 80.13 85.47 68.44 89.32

7 87.87 81.86 79.19 92.48 89.31 87.76

9 87.32 81.15 78.87 91.64 88.28 86.62

11 87.13 80.85 78.70 90.77 87.56 85.88

A 87.88 81.85 78.70 93.49 90.36 88.96

Δ(min, A) 0.75 2.16 0.00 19.10 39.41 3.08

Δ(max, A) -0.72 -0.01 -1.74 1.01 1.05 -0.70

AQE (mAP %) QB + SP (mAP %)Inlier

Threshold

Table 4.1: Comparison of fixed inlier threshold and adaptive inlier threshold (ADINT,
A). QB + SP performed the best with ADINT, and ADINT provided a fair performance

for AQE.

4.3.3 Evaluation

We compared the effect of the adaptive inlier threshold algorithm (ADINT) with that
of a fixed inliner threshold (FINT). Here we are testing on an Adaptive Inlier Threshold
algorithm, which is applicable to only SP based method like AQE, and QBSP. So, for
fairness, we compared only QBSP and AQE. To be fair evaluation, we also let AQE
use our ADINT as well as a traditionally fixed inlier threshold (FINT). The results are
shown in table 4.1. AQE had less impact on the various inlier thresholds, while QB +
SP had a strong impact. As table, the different between min and A is how much ADINT
better than minimum of FINT, and different between max and A is how much ADINT
better than maximum of FINT. The summary of the result is that, ADINT is better
than FINT in most cases of QBSP, so ADINT significantly improved the performance
of QBSP, And ADINT is on par to AQE, so its contribution to AQE was minor. At
least, our parameter tuning is an automated threshold, that is what we really proud of
our newly contributed algorithm.

4.4 Results

Bringing back the spatial verification method like LO-RANSAC on top of our proposed
QB framework, which named as QBSP, shows the prominence result of final retrieval
performance Additionally. as QB fails on some query that does not contain sufficient
true positives (see figure 4.11), which in total top-k images were dominated by irrelevant
images as described in section 3.5, while QB + SP does much better result on this
problem. The overall mAP of QB + SP are reported in the evaluation chapter 6.

71

Chapter 4. Query Bootstrapping extended

0 5
0

1
0

0

1
5

0

2
0

0

2
5
0

-2
0
.0

0

0
.0

0

2
0

.0
0

4
0
.0

0

6
0
.0

0

8
0
.0

0

1
0
0
.0

0

all_souls_1

all_souls_2

all_souls_3

all_souls_4

all_souls_5

ashmolean_1

ashmolean_2

ashmolean_3

ashmolean_4

ashmolean_5

balliol_1

balliol_2

balliol_3

balliol_4

balliol_5

bodleian_1

bodleian_2

bodleian_3

bodleian_4

bodleian_5

christ_church_1

christ_church_2

christ_church_3

christ_church_4

christ_church_5

cornmarket_1

cornmarket_2

cornmarket_3

cornmarket_4

cornmarket_5

hertford_1

hertford_2

hertford_3

hertford_4

hertford_5

keble_1

keble_2

keble_3

keble_4

keble_5

magdalen_1

magdalen_2

magdalen_3

magdalen_4

magdalen_5

pitt_rivers_1

pitt_rivers_2

pitt_rivers_3

pitt_rivers_4

pitt_rivers_5

radcliffe_camera_1

radcliffe_camera_2

radcliffe_camera_3

radcliffe_camera_4

radcliffe_camera_5

True positive amount

mAP

Q
u

ery
 to

p
ics

T
ru

e p
o
sitiv

e am
o
u
n

t
Im

p
ro

v
em

en
t

F
igure

4.11:
T

he
relative

im
provem

ent
for

each
query

topic
ofQ

B
+

SP
over

Q
B

on
the

O
xford

5k
dataset

show
Q

B
+

SP
im

prove
the

retrieval
perform

ance
m

uch
better

than
Q

B
on

the
low

num
ber

oftrue
positive

list.

72

Chapter

5
Speed-up mining process

“It does not matter how slowly you go as long as
you do not stop.”

— Confucius

Once we do mining on a top-k relevant images with a very large vocabulary size, we
found the patterns may response to the visually consistent objects on many images. This
creates too large permutation of the possible patterns into the mining space, which is a
direct caused of a time consuming problem for the mining component of our QB.

Thereby, we aim to reduce the time consumption for the pattern mining, since the
original FIM tool was designed to handle a small number of item while having large
number of transactions is not a problem. In our task, we employed FIM for using with a
visual words, which we originally used up to 1 million words as our vocabulary size. The
total number of item in this case is the total non-zero words from the BoVW histogram,
and the number of transaction is the number of top-k images. Hence, the number of
item can be too large, or even reaching to 1 million is still harder but possible. In this
chapter, we present the way to speed-up a mining process by using a technique from a
data mining field. Also, we evaluate the time consumption used by this technique, which
shows significantly improved of speed comparing to the traditional mining approach.

73

Chapter 5. Speed-up mining process

0.000

5.000

10.000

15.000

20.000

25.000

30.000

Ox 5k Ox 105k Ox 1m Paris 6k Paris 1m

S
ec

o
n

d
s

FIM time consumption

FIM

Figure 5.1: The evaluated time consumption taken by all dataset includes Oxford 5k,
105k, 1m, Paris 6k and Paris 1m.

5.1 Motivation

We presented QB and further boosted the performance by using a spatial verification
as QBSP, with the integration of automatic parameter tuning algorithms. However, we
found that our proposed QB and QBSP seemed to be slower than the other approaches.
So, we evaluate the time consumption of FIM taken by several approaches and also
report the result in the following figure 5.1.

We ran these experiments using the parameters finely tunned for achieving the best
performance for each of the methods. (the best parameters configuration are described
in the session 6.7). In a real-time object-based image retrieval task, waiting for result
within a few second is generally fine. However, as the result reported in the figure 5.1,
show we may need to wait for searching result from 5 to 30 second on average caused by
the employed FIM process within QB and QBSP. So, this amount of time is rather large,
and not rated as a real-time practical retrieval system. By this reason, we additionally
focus on the way to improve the speed of FIM by using several trick on the practical
implementations, the way to feed image transactions to FIM, and the way to import
such large number of the patterns from the FIM output. Although, there are several
implementation tricks were actually implemented in this work, however, in this chapter,
we will discuss more in detail of a technique that lead to a very big jump which reduce
a lot of time usage by FIM. The technique is called as a transaction transposition.

74

Transaction transposition

FIMTransaction DB

Patterns 2n

n

n

item

transaction

item

pattern

Too large

pattern

Figure 5.2: The figure of pattern discovery using a normal transactions database
with very large number items as possible to 1 million item (visual words). By using
a standard way of pattern mining, the final pattern is usually large as 2n when n is a

number of items. So, it can be too large as an intangible problem.

5.2 Transaction transposition

Generally, FIM tools are designed for a very large number of transaction and not much
number of different item, according to the market basket analysis purpose. FIM usually
find the number of pattern up to 2n as n is the total number of identical item from
several baskets. Contrastingly, in our case, we use a very large visual words as 1 million
words to build the vocabulary for images. So, FIM task is to discover on a very high
number of pattern up to 2n, where n is the non-zero word identically collected from
many images, which can be rather huge as illustrated in figure 5.2.

The theoretically method called transaction transposition helps reducing the total min-
ing space, which then map the mining result from the transposed transaction back to
the original aspect using a Galois connection [146] through an inverse relationship on
a complete lattice. By doing a this, we can save a lot of mining time using on any
FIM algorithms. there is a theoretically method called transaction transposition This
technique can also help speed-up the mining process, as employed in several work e.g.,
Voravuthikunchai et al. [144], Jeudy and Rioult [147], Joshi and Jain [148]. The useful
of this technique is to “transposed” the transaction database from a very large column
to be significantly less number of columns, and the row of transaction also be switched
from the original one. The illustration of this technique can be seen in figure 5.3.

75

Chapter 5. Speed-up mining process

FIM

T
ra

n
sa

ct
io

n
 D

B
T

Patterns 2<<n

<< n

item

transaction

transaction

pattern

<< n

Faster!!

Figure 5.3: By transposing a transaction database of the figure 5.2, this figure illus-
trates a pattern discovery using transaction transposition technique, which will produce
the pattern from much smaller item amount, as from n item to only the number of trans-
action or top-k images, or the total number of patterns to be discovered in the mining

space will be 2k that is much less than 2n where k � n.

There are several interesting questions which is raised when doing a transaction trans-
position:

1. What kind of information can be gathered in the “transposed” transaction database
on the patterns of the original transaction database?

2. How can we regenerate the patterns in the original transaction database from the
patterns extracted in the “transposed” transaction database?

3. How can we generate all the itemsets satisfying a constraint using the extracted
of such patterns.

76

Usage

Img. Ik Trans. tk
I1 t1 = {i1, i2, i4, i6}
I2 t2 = {i2, i5, i8}
I3 t3 = {i2, i3, i9}
I4 t4 = {i1, i2, i4, i7}
I5 t5 = {i2, i3, i8}

Table 5.1: A simple transaction database of top-five images.

5.3 Usage

Given transactions with m items, FIM generally discovers through shared patterns from
2m possible subsets of the permutation pool generated by items of a transaction database.
For a toy example, suppose we have three items or let’s say code words of a, b, and c;
the total number of possible patterns in this pool will be 23 = 8, that actually consisted
of the complete set of patterns as P ∈ {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

According to our problem, since we use 1 million words as visual vocabulary for building
BoVW, these BoVW vectors are rather high dimension, and the sparsity is also quite
high. For instance, let us assume that an image has been encoded into a BoVW his-
togram with 1000 non-zero words. Suppose further that we have ten images in a ranked
list that have 200 words in common while each of the other 800 words appear only once
in them. In total, there would be 200 + (800× 10), or 8200 distinct words to be handled
by FIM. Therefore, m = 8200 yields 28200 ∼= 2.79 × 102468 possible sets, which is really
large size makes the search space intractably large for FIM.

Although the number of items can be large (in our case several thousands), the number of
transactions is relatively small (a few tens to hundreds). A number of pattern discovery
studies [149–151] have tried to reduce a dimension of n, by using a Galois connection to
do mapping on a completed lattice from a transposed matrix side back to the original
untransposed matrix side. Before doing a transaction transposition, we need to check
whether our case satisfying the condition said in Galois mapping as follow:

“The mapping f is antitone and there exists an antitone mapping g from P

to P ′ such that the composition mapping are extensive.– (GM)[146]”

Let P and P ′ are two complete lattices generated from a transaction database T and
a transposed of a transaction database T is T T . Using our toy example on a table 5.1,
we then found total patterns of P and P ′ are isomorphic to each other on a complete
lattice as shown in a figure 5.4.

77

Chapter 5. Speed-up mining process

4.QB Transpose (6)

• Since there exists an isomorphic of two complete lattices
• We can find the function f: P’  P using Galios connection

Lattice P’ of a transposed transaction

Lattice P of a normal transaction

To
p

-k
 im

ag
e

sp
ec

ia
liz

at
io

nV
isu

al w
o

rd
 sp

ecializatio
n

Figure 5.4: Two complete latticesa of (top-down) a toy example transaction database
and (bottom-up) a transposed transaction show the isomorphic property which satisfy

the Galois mapping condition.

aThe lattices of this toy example is visualized by Lattice Miner. [152]

Briefly speaking, transposing a transaction database, which contains m items with n

transactions where m� n, will let FIM discovers on much smaller amount of the possible
patterns pool as the total possible patterns are only 2n, which is� 2m. Therefore, FIM
will operate much faster than using an original transactions. The patterns discovered
from the original transaction database and the transposed transaction database are
visualized in a figure 5.5. Also, a timing report of both version FIM(s) and FIMT (s)
are shown in a figure 5.6).

As we found out our target patterns can be mined from T and will be faster with T T ,
however, the meaning of both pattern results are different. To be able to map from the
transposed transactions space to the original transactions space, we will discuss about
the meaning of each side for more understanding on how to map these two space back
and forth.

Original space Mining patterns from original transaction database means, we are
finding which visual word sets shared among images, where p ∈ P : p = {i1, i2, i3...im}.

Transposed space Mining patterns from a transposed transaction means, we are
finding which images contain similar visual words., where p′ ∈ P ′ : p′ = {t1, t2, t3...tk′}.

78

Usage

(a) Original top-k transactions

Items

T
ra

n
sa

ct
io

n
s

Items

P
at

te
rn

s

60.00%
40.00%

40.00%

40.00%

20.00%
20.00%
20.00%

20.00%

20.00%

(b) Patterns: which item sets

shared among transaction

FIM

(c) Transposed top-k

transactions

Transactions

It
em

s

Transaction

transposition

FIM

Transactions

P
at

te
rn

s

11.11%
11.11%
11.11%
22.22%
22.22%
33.33%
33.33%
33.33%
44.44%

(d) Patterns: which transaction

sets contain similar items

Figure 5.5: (a) Original transaction database (T). (c) Transposed transaction
database (TT) for speeding up FIM (b), (d) Patterns (P and P ′) discovered by us-

ing FIM on a normal database and a transposed database.

In order to utilize a patterns P ′, we need a mapping function f : P ′ → P as follow:

f(P ′) = ∀p′
j′,t′ ∈ P ′ : A (5.1)

where

A =
∧


[T (p′
1,1) ∧ T (p′

1,2) ∧ . . . ∧ T (p′
1,k′)]1

[T (p′
2,1) ∧ T (p′

2,2) ∧ . . . ∧ T (p′
2,k′)]2

...
[T (p′

j′,1) ∧ T (p′
j′,2) ∧ . . . ∧ T (p′

j′,k′)]j

 (5.2)

and

A = P (5.3)

79

Chapter 5. Speed-up mining process

where P ′ will be map to P through a transaction T , T (x) will return a set of items
on original T , and the total number of patterns on both space will be the same, as
‖P ′‖ = ‖P‖ or j′ = j.

To be more clear on how this function can map two space together is that, from the
patterns P ′, we map back each item founded in p′, which corresponds to a transaction
id t′, to an original transaction database T . The actual set of items im on each mapped
transaction will be checked to find which item appear on all transactions t′. And such
item im will be collected to build p as a mapped pattern from p′ → p. In the final sense,
we will discover patterns several order of magnitudes faster than a traditional way.

5.4 Evaluation

We then evaluate the time usage for both FIM and FIMT on the standard evaluation
datasets including our extended distractor datasets. The timing report on both FIM

and FIMT are shown in the following figure 5.6. As result, FIMT can significantly
reduced the time usage of a mining process on all datasets. And also, we can easily
regenerate the result in the original aspect by using the result of the transposed version
within less amount of time.

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

Ox 5k Ox 105k Ox 1m Paris 6k Paris 1m

S
ec

o
n

d
s

FIM time vs. FIMT time

FIM

FIMT

Figure 5.6: The figure show an average time usage when using FIM on a standard
transaction database comparing to the transposed version as FIMT on a transposed of

transaction database.

80

Chapter

6
Experimental setup, evaluations,

and discussion

“Success is not final, failure is not fatal: it is the
courage to continue that counts.”

— Winston S. Churchill

We proposed the works for help improving the retrieval performance by derive the main
benefit of frequent itemsets mining technique for finding co-occurrences of object pattern
through the first round relevant images, which results to relax the constraints from using
a query image. In this chapter, we evaluate the retrieval performance on both standard
query and the degraded query. We compare our works QB and QBSP with our re-
implemented of a standard BoVW follow the framework of Zhu and Satoh [73], Zhu
et al. [78, 122], the standard average query expansion (AQE[32]) by Chum et al. [32],
our implemented of average query expansion (AQE), our bare mining work as a query
bootstrapping (QB) with the automatic support tuning algorithm (ASUP), and our QB
work with spatial verification (QB + SP) and together with the adaptive inlier threshold
tuning algorithm (ADINT). As result our methods show very impressive result that has
significant improvement over the selected baselines. Also, we also discuss about pros and
cons with the limitation, the target datasets, and the requirements of using our works
for better understanding and for integrating our work in a proper way.

81

Chapter 6. Experimental setup, evaluations, and discussion

6.1 Datasets and evaluation protocol

The dataset used in this research are well known which firstly introduced in the work of
Philbin et al. [22, 37] to be the standard datasets of object based image retrieval, namely,
Oxford 5k, Oxford 105k, and Paris 6k as targeted for a landmark retrieval. Together
that, they provide the ground truth sets representing the relevant images corresponding
to each of specific query topic. Moreover, we evaluate the retrieval performance by using
mean average precision (mAP) as an evaluation metric for all of the experiment running
on this work. For example, one run means to retrieve the result for the provided 55
queries, all these results will be calculated the average precision (AP) comparing to the
ground truth list. Therefore, mean average precision is calculated by averaging all the
APs together as an mAP for one run. The datasets description is describe as follow:

The Oxford Buildings 5k The dataset consists of 5,062 high-resolution images that
were crawled from Flickr [2] by using queries of the famous Oxford landmarks, such as
“Oxford Christ Church” and “Oxford Radcliffe Camera”.

The Oxford Buildings 105k The dataset is extended from an Oxford 5k dataset by
including 100k of distractor images from the Flickr 100k dataset, as it originally consists
of 100,071 images, which collected by searching for popular Flickr tags.

The Paris 6k The dataset consists of 6,412 high-resolution images collected from Flickr
by searching for particular Paris landmarks, such as “Paris Moulin Rouge” and “Paris
Arc de Triomphe”.

The Ground truth labels The ground truth is provided for an Oxford dataset and a
Paris dataset independently. Each of dataset is provided with 11 different landmarks,
that consisting of 5 variances view angle per a landmark. Combining of these set, the
dataset provide the set of 55 query topics in total, with four possible labels as follows:

1. Good – a clear picture of the object/building.

2. OK – more than 25% of the object is clearly visible.

3. Bad – the object is not present.

4. Junk – less than 25% of the object is visible, or there is a very high level of occlusion
or distortion.

82

System and parameters configurations

Name Total images Total features Sampling Cluster

Stanford-MVS 1,193 1,458,667 All 1M

Oxford 5k 5,063 17,390,270 10M 1M

Oxford 105k 105,134 329,147,561 10M 1M

Paris 6k 6,392 20,244,882 10M 1M

Oxford 1M 1,005,063 798,393,536 100M 1M

Paris 1M 1,006,392 801,248,148 100M 1M

INS 2011 1,650,827 917,656,466 200M 1M

INS 2012 2,256,930 1,908,832,917 200M 1M

INS 2013-2014 7,837,877 9,814,391,541 200M 1M

Table 6.1: The statistic shows sampling rate for building a codebook.

6.2 System and parameters configurations

In this section we describe on the configurations and the parameters that we applied
through all this research. Beginning from the feature extraction, we use 128-dimension
of SIFT feature detector with Hessian Affine descriptor from the implementation of
Michal Perďoch [15, 16]. Also, we modified the code to produce the descriptor with
suggested namely as a RootedSIFT by Arandjelovic [30]. For the encoding step, we used
randomly sampling from the local features on each of dataset independently, as reported
in the table 6.1, for training the a codebook with the vocabulary size of 1 million words.
In particular, we used an approximate k-mean algorithm (AKM) to build up the clusters
by using a FastCluster by Philbin et al. [22, 23], with 50 iterations for terminating
the clustering process. The visual word assignment was done with an approximate
nearest neighbor search algorithm (ANN) by using a fast library for approximate nearest
neighbor (FLANN) by Muja and Lowe [24], Muja [25]. We use a hard assignment for
nearest neighbor, 512 checks on maximum leafs on the randomized KDTree index. For
the spatial verification, we used a LO-RANSAC library by Lebeda et al. [33] with the
default parameters. However, we increased the random samples from 1000 to 3000
with the expect for obtaining a small accuracy improvement. Moreover, addition to the
parameters indicated above, we enabled the local optimization option (enable lo=true)
for boosting up the performance as claimed in his paper.

We conducted all experiments on a computer running Linux RHEL 6.3 with an Intel
Xeon E7-4870 @2.4 GHz having 40 virtual CPUs. For time usage evaluations, we eval-
uate all the algorithm based on pre-cached of an inverted index database with 100%
cache hit on our machine with the maximum of 512 GBs of memory. The core retrieval
module was written with the compliance of the C++11 standard, and all the codes were
compiled with the optimization -O3 flag using cross-compiled GCC 4.8.1. We evaluated
the time usage of FIM tool and the similarity scoring process based on a single CPU.
Although, since we parallelized RANSAC process, the time usage reported in this paper
are conducted with of the available CPUs.

83

Chapter 6. Experimental setup, evaluations, and discussion

O
x

 5
k

O
x

 1
0

5
k

O
x

 1
m

P
aris 6

k
P

aris 1
m

B
o

V
W

8
2

.8
4

7
5

.6
6

7
5

.2
8

7
6

.3
3

5
9

.9
5

A
Q

E
 [2

8
]

7
8

.5
0

7
2

.5
0

7
2

.0
0

A
Q

E
8

8
.1

2
8

0
.7

1
7

8
.4

8
8

0
.4

4
6

4
.3

2

Q
B

8
6

.4
1

7
5

.6
7

7
7

.5
6

8
8

.2
8

6
9

.9
4

Q
B

 +
 S

P
93.49

90.36
89.52

88.96
79.81

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

mAP

B
o

V
W

A
Q

E
 [2

8
]

A
Q

E

Q
B

Q
B

 +
 S

P

F
igure

6.1:
C

om
parison

of(Q
B

and
Q

B
+

SP
)

w
ith

B
oV

W
,A

Q
E,and

A
Q

E
[32]on

O
xford

5k,O
xford

105k,and
Paris

6k.
Q

B
and

Q
B

+
SP

significantly
outperform

ed
the

other
m

ethods.

84

The overall comparison

6.3 The overall comparison

The overall retrieval performance for all methods were done on its best parameters
configuration as we finely tune in details. However, for the QE based approaches (AQE,
AQE[32], QB, and QB + SP), setting various top-k values will directly effect to the final
performance. We ran the top-k experiments using the optimal parameter configurations
as finely tuned in details for the best performance on each method independently Shortly,
we used the top-100 images for AQE, QB + SP on all datasets, the top-100 for QB on
the Paris dataset and the top-25 for QB on the Oxford datasets (The details of top-k
tuning will be discussed in section 6.4). However, for the AQE[32], due to a speed issue,
top-10 images is only the maximum for them.

Figure 6.1 shows the performance of BoVW, AQE[32], AQE, QB, and QB + SP respec-
tively. The result is clearly explained itself from this figure that QB + SP significantly
outperformed the other methods and also show the improvement better than AQE. In
general, QB + SP shows the highest AP in all queries, which is implied that the overall
recall also got improved. Moreover, our QB + SP also shows the significant improve-
ment from the standard BoVW baseline on the very high distractor images as our newly
extended datasets e.g., Oxford 1M and Paris 1M.

The retrieved result sample are shown in the selected result in figure 6.2. Also, the
figure 6.2 shows the top retrieved images have better visual relevancy by AQE and much
better with our QB + SP comparing to the standard BoVW baseline. Additionally, AQE
improve the result (figure 6.2d) to be closer to the provided query region (figure 6.2a),
and QB + SP improve the result (figure 6.2f) to be closer among the relevance images
found in the retrieved list. So, this is the main evidence that our methods already relax
the spatial constraint from the query image. However, our method will improve the
retrieval performance if the standard BoVW provides some good enough result. Hence,
it has less problem to the different query images.

85

Chapter 6. Experimental setup, evaluations, and discussion

(a) Query

(b) Baseline results (top-20).

(c) True positives of a baseline (top-100).

(d) AQE results (top-20).

(e) True positives of AQE (top-100).

(f) QB + SP results (top-20).

(g) True positives of QB with LO-RANSAC spatial verification (top-100).

Figure 6.2: Top 20 relevant images showing how the three main approaches differ
in effect and the corresponding true positive lists. (A) Query image with ROI (B-C)
BoVW result with an AP of 78.82% (D-E) AQE got better matches to ROI than BoVW
with an AP of 94.44% (F-G) QB + SP reflects the frequent objects from the initial rank

with an AP of 99.76%.

86

Impact of the number of relevant images to retrieval performance

6.4 Impact of the number of relevant images to retrieval
performance

One of the parameters of query expansion based methods (e.g., AQE, QB, and QB +
SP) is the number of relevant images k from the first-round retrieval. We varied k (e.g.,
, 25, 50, 75, and 100) to see how it affected the retrieval performance.

As figure 6.3 shows, the spatial verification based methods (AQE and QB + SP) received
a positive impact for a larger number of images, while those without spatial verification
(QB) suffered when too many images were added. A possible reason for the non-spatial
verification methods doing less well is that a larger number of images may have more
irrelevant images; spatial verification eliminates such irrelevant images. In addition, QB
+ SP takes full advantage of the more numerous relevant images because it can utilize
the consistency among them. In contrast, AQE did not enjoy this benefit because it
imposes pairwise consistency between the query and each of the images in the ranked
list.

Figure 6.3 also shows that increasing the number of images had a negative impact on
the recall of QB with Oxford 5k and 105k, but a positive impact with Paris 6k. This
difference is due to the different numbers of relevant images per query. The number
of true positive images per query of the Paris 6k dataset is on average 163 (minimum
51 and maximum 289). On the other hand, Oxford 5k and 105k datasets contains on
average only 51 true positive images per query (minimum 6 and maximum 221). This
is why QB did not degrade the recall on Paris 6k even with up to 100 images.

87

Chapter 6. Experimental setup, evaluations, and discussion

25 50 75 100

AQE 87.73 88.01 87.99 88.11

QB 86.41 83.20 79.12 74.23

QB+SP 90.54 92.71 93.81 93.43

50
55
60
65
70
75
80
85
90
95

100

O
x
fo

rd
 5

k
 m

A
P

top-k

AQE

QB

QB+SP

25 50 75 100

AQE 80.50 80.92 80.13 79.93

QB 78.55 66.62 58.32 50.87

QB+SP 85.77 88.98 89.47 90.95

50
55
60
65
70
75
80
85
90
95

100

O
x
fo

rd
 1

0
5
k
 m

A
P

top-k

AQE

QB

QB+SP

25 50 75 100

AQE 78.16 79.31 79.89 80.38

QB 83.66 87.13 88.28 89.62

QB+SP 83.14 86.89 88.47 89.67

50
55
60
65
70
75
80
85
90
95

100

P
ar

is
 6

k
 m

A
P

top-k

AQE

QB

QB+SP

Figure 6.3: Impact of different top-k values on the retrieval performance of the query
expansion based method.

88

Automatic parameters and relative improvement

6.5 Automatic parameters and relative improvement

At this point, as we proposed several methods aimed to improve the final retrieval
performance. Thereby, in this section, we are evaluating our presented methods by
module to see how each module improves the result relatively to each others. There are
2 core modules and 2 additional parameter tuning algorithms as follows:

• Query bootstrapping (QB)

• Automatic support (ASUP)

• Spatial verification (SP)

• Adaptive inlier threshold (ADINT)

However, ASUP is a direct extension to QB, and ADINT is a direct extension to SP,
and also SP is extended on QB. We then evaluate the performance based on with and
without extension as follows:

• QB

• QB + ASUP

• QB + ASUP + SP

• QB + ASUP + SP + ADINT

The total result of component based evaluation is reported in the figure 6.4. We run the
experiments on only the standard datasets of Oxford 5k, 105k and Paris 6k.

89

Chapter 6. Experimental setup, evaluations, and discussion

O
x

 5
k

O
x

 1
0

5
k

P
aris 6

k

Q
B

8
3

.5
2

7
4

.4
3

8
4

.7
7

Q
B

 +
 A

S
U

P
8

6
.4

1
7

5
.6

7
8

8
.2

8

Q
B

 +
 A

S
U

P
 +

 S
P

9
2

.4
8

8
9

.3
1

8
7

.7
6

Q
B

 +
 A

S
U

P
 +

 S
P

 +
 A

D
IN

T
93.49

90.36
88.96

7
0

.0
0

7
5

.0
0

8
0

.0
0

8
5

.0
0

9
0

.0
0

9
5

.0
0

mAP

Q
B

Q
B

 +
 A

S
U

P

Q
B

 +
 A

S
U

P
 +

 S
P

Q
B

 +
 A

S
U

P
 +

 S
P

 +
 A

D
IN

T

F
igure

6.4:
T

he
perform

ance
com

parison
ofour

contributions
show

s
the

accum
ulated

perform
ance

gain
by

adding
each

com
ponent

to
the

standard
B

oV
W

baseline.

90

An impact of query quality to retrieval robustness

6.6 An impact of query quality to retrieval robustness

The following experiments assessed the impact of degraded queries.

6.6.1 Query with noise

We added the Gaussian noise with different standard deviation values (σ = 1.0, 1.5,
and 2.0) to the original query. The results, reported in figure 6.5, show that QB + SP
gave the best results for all three datasets and showed good robustness to noise levels.
However, QB became inaccurate when very hard noise appeared in an image and put
many more irrelevant images in the initial ranked lists. AQE and BoVW were affected
in the similar way.

6.6.2 Query with lower resolution

We did another experiment on query quality that assumed the query image was from
a low-resolution camera or was a thumbnail image that would be used, for example,
to speed up data transfers through a high latency network. We resized the query on
different scales (20%, 40%, 60%, and 80%). Figure 6.5 shows that QB + SP performed
the best until 40% whereas other methods experienced large performance drops.

91

Chapter 6. Experimental setup, evaluations, and discussion

w/o 1.0 1.5 2.0

Baseline 82.84 80.17 73.32 62.28

AQE 88.12 88.24 86.43 82.02

QB 86.41 79.94 66.29 51.18

QB + SP 93.49 92.15 90.71 89.03

30

40

50

60

70

80

90

100

O
x
fo

rd
 5

k
 m

A
P

Gaussian sigma (σ)

Baseline

AQE

QB

QB + SP

w/o 1.0 1.5 2.0

Baseline 75.66 71.25 62.45 49.36

AQE 80.71 80.92 76.25 67.92

QB 75.67 63.49 46.02 35.18

QB + SP 90.36 88.48 84.60 75.92

30

40

50

60

70

80

90

100

O
x
fo

rd
 1

0
5
k
 m

A
P

Gaussian sigma (σ)

Baseline

AQE

QB

QB + SP

w/o 1.0 1.5 2.0

Baseline 76.33 72.82 66.21 57.72

AQE 80.44 77.14 75.77 74.05

QB 88.28 85.01 83.77 77.70

QB + SP 88.96 87.11 86.61 84.64

30

40

50

60

70

80

90

100

P
ar

is
 6

k
 m

A
P

Gaussian sigma (σ)

Baseline

AQE

QB

QB + SP

Figure 6.5: Retrieval performance for synthetic noisy query.

92

An impact of query quality to retrieval robustness

w/o 80 60 40 20

Baseline 82.84 82.29 82.25 79.89 66.47

AQE 88.12 88.14 88.70 87.93 79.37

QB 86.41 84.78 86.39 84.69 76.22

QB + SP 93.49 92.68 92.58 91.92 86.07

50
55
60
65
70
75
80
85
90
95

100
O

x
fo

rd
 5

k
 m

A
P

Query scale (%)

Baseline

AQE

QB

QB + SP

w/o 80 60 40 20

Baseline 75.66 75.85 75.45 72.04 53.07

AQE 80.71 81.51 82.28 80.80 64.46

QB 75.67 72.77 74.74 68.93 52.86

QB + SP 90.36 90.28 89.31 89.12 79.82

50
55
60
65
70
75
80
85
90
95

100

O
x
fo

rd
 1

0
5
k
 m

A
P

Query scale (%)

Baseline

AQE

QB

QB + SP

w/o 80 60 40 20

Baseline 76.33 75.90 75.47 72.17 59.05

AQE 80.44 78.46 78.38 78.09 71.40

QB 88.28 84.91 84.81 85.04 84.05

QB + SP 88.96 88.84 88.31 88.93 85.29

50
55
60
65
70
75
80
85
90
95

100

P
ar

is
 6

k
 m

A
P

Query scale (%)

Baseline

AQE

QB

QB + SP

Figure 6.6: Retrieval performance for simulated low-resolution query.

93

Chapter 6. Experimental setup, evaluations, and discussion

6.7 Time consumption

We ran these experiments using the parameters that achieved the best performance for
each of the methods. We used the top-100 images for AQE, QB + SP on all datasets,
the top-100 for QB on the Paris dataset and the top-25 for QB on the Oxford datasets.
Figure 6.7 lists the average time consumption per query. Note that we excluded feature
extraction from the evaluation since it had no effect on any method.

QB + SP was the slowest, followed by QB, AQE, and BoVW. We did a time breakdown
on QB and QB + SP, namely, on the SP (spatial verification) module, FIMT (frequent
itemset mining process with matrix transposition) module, and Sim (similarity calcu-
lation) module. It is clear from figure 6.8 that the most time-consuming module was
FIM process. On the other hand, FIM tends to be slow when the number of discovered
patterns is huge. Assuming that if a query is “easy” in terms of retrieval performance
(namely, BoVW can achieve very high performance and thus the contribution of query
expansion is limited), many visual words may be found in common among the query and
relevant images, and thus, FIM may produce many patterns. Moreover, if we assume
that a “hard” query (BoVW performs poorly and thus there is room for the improvement
by query expansion), relevant images may have fewer visual words in common, FIM may
produce fewer patterns. To see whether this assumption is valid, we checked the rela-
tionship between retrieval performance and the total number of patterns. Figure 6.9
plots mAP values for each query versus the number of patterns for all methods.

For a query on which BoVW obtained a low mAP, FIM discovers fewer patterns and
thus is fast. On the other hand, for a query on which BoVW obtained a high mAP,
FIM tends to produce more patterns. Accordingly, we categorized queries into two types
using the number of patterns, which are easy for FIM (#patterns < 100k) and hard for
FIM (#patterns ≥ 100k).

The red vertical lines in figure 6.9 show boundaries between easy and hard cases. On
the easy side, QB + SP significantly improved mAP. However, it yielded less of an
improvement on the hard side. Table 6.2 shows mAP values and processing times for
easy and hard cases. QB + SP consumed much more processing time for the hard cases
than for the easy cases, whereas its performance improvement was significantly larger
in the easy cases than in the hard cases.

94

Time consumption

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

BoVW AQE QB QB + SP

S
ec

o
n

d
s

Overall time consumption

Ox5k

Ox105k

Ox1m

Paris6k

Paris1m

Figure 6.7: Average time consumption per query (without feature extraction) of
BoVW, AQE, QB, and QB + SP.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

FIMT Sim SP FIMT Sim

QB QB + SP

S
ec

o
n
d
s

QB-based timing breakdown

Ox 5k

Ox 105k

Ox 1m

Paris 6k

Paris 1m

Figure 6.8: Average time consumed per query for each module of QB and QB + SP.

6.7.1 Colossal pattern

Although we used transaction transposition to speed up the pattern discovery process,
we still spent a lot of time on the “hard” cases. Overall, these queries made QB + SP
significantly slower on average than the other methods, as shown in table 6.2.

The main reason behind this slowdown is that the large number of relevant images with
many visual words in common caused an explosion in the number of patterns discovered
by FIM. This problem is called the colossal pattern problem. In [35], it is pointed out that
not all of these patterns may need to be discovered and their patterns can be roughly
estimated by using an approximate method [133]. In our study, while mining “easy”
queries could be accomplished very quickly (within a few hundred milliseconds), the

95

Chapter 6. Experimental setup, evaluations, and discussion

0

20

40

60

80

100

50 500 5,000 50,000 500,000 5,000,000

O
x
fo

rd
 5

k
 m

A
P

Pattern amount

Baseline

AQE

QB

QB+SP

0

20

40

60

80

100

50 500 5,000 50,000 500,000 5,000,000

O
x
fo

rd
 1

0
5
k
 m

A
P

Pattern amount

Baseline

AQE

QB

QB+SP

0

20

40

60

80

100

50 500 5,000 50,000 500,000 5,000,000

P
ar

is
 6

k
 m

A
P

Pattern amount

Baseline

AQE

QB

QB+SP

Figure 6.9: mAP vs. total number of patterns. This plot shows the improvement
was had by our QB + SP on most queries that generated less than 100k patterns. In

contrast, it had less effect on queries that generated more than 100k patterns.

“hard” cases were time consuming. According to the experimental results in figure 6.10,
mAP improved only slightly for the total number of patterns over 100k. Here, we could
stop mining the “hard” cases once FIM has discovered enough of the core patterns, which
took less than 3 seconds to compute. Accordingly, thanks to transaction transposition
technique, we can recover the most of approximated patterns from the colossal space
(e.g., 10 million patterns).

96

Time consumption

m
A

P
(%

)
m

A
P

(%
)

S
D

(±
%

)
m

A
P

+
(%

)
m

A
P

(%
)

S
D

(±
%

)
m

A
P

+
(%

)

E
asy

4
0

8
1
.2

6
0
.0

7
5

8
5
.5

1
2
1
.0

2
4
.2

5
0
.1

6
6

9
2
.6

9
1
4
.2

5
1

1
.4

3

H
ard

1
5

8
7
.0

6
4
.4

7
1

8
8
.7

9
1
0
.9

7
1
.7

2
1
6
.0

3
7

9
5
.6

4
4
.0

7
8

.5
8

E
asy

4
0

7
3
.9

4
0
.0

1
1

7
3
.9

9
2
9
.9

4
0
.0

5
0
.0

6
6

9
0
.7

7
1
5
.9

5
1

6
.8

3

H
ard

1
5

8
0
.2

4
0
.1

0
9

8
0
.1

3
1
3
.8

1
-0

.1
1

1
5
.9

4
9

8
9
.2

8
9
.1

9
9

.0
4

E
asy

4
0

7
2
.9

2
0
.0

4
5

7
5
.5

1
2
9
.7

6
2
.5

9
0
.1

3
1

8
5
.4

2
1
9
.9

8
1

2
.5

0

H
ard

1
5

8
1
.5

8
1
.6

0
1

8
3
.0

4
1
2
.4

8
1
.4

6
1
6
.1

8
4

9
0
.4

5
7
.2

9
8

.8
7

E
asy

2
5

7
1
.0

9
0
.9

2
2

8
6
.5

3
9
.2

3
1

5
.4

4
0
.3

6
3

8
6
.1

7
9
.3

9
1
5
.0

8

H
ard

3
0

8
0
.6

9
2
1
.4

7
5

8
9
.7

4
1
5
.3

7
9
.0

5
1
9
.0

3
0

9
1
.2

8
1
2
.2

8
1

0
.5

9

E
asy

2
5

4
9
.2

3
0
.0

6
6

6
3
.5

8
2
3
.0

1
1

4
.3

5
0
.2

8
1

7
0
.8

9
2
1
.6

3
2
1
.6

5

H
ard

3
0

6
8
.8

8
0
.9

2
7

7
5
.2

3
1
9
.8

7
6
.3

4
2
0
.1

9
6

7
9
.7

6
1
9
.7

8
1

0
.8

7

O
x
 5

k

O
x
 1

0
5

k

P
a

ris 6
k

P
a

ris 1
m

O
x
 1

m

Type

#Topics

B
o

V
W

Q
B

Q
B

+
S

P

F
IM

T(s)
P

recisio
n
(%

)
F

IM
T(s)

P
recisio

n
(%

)

T
able

6.2:
m

A
P

and
tim

es
of

specific
query

types
(easy/hard).

FIM
takes

the
longest

and
is

especially
slow

on
“hard”

queries
that

m
ostly

got
high

retrieval
perform

ance
in

the
first

round.
Q

B
+

SP
yielded

a
very

large
perform

ance
im

provem
ent

w
ith

very
low

latency
for

“easy”
queries.

97

Chapter 6. Experimental setup, evaluations, and discussion

50

60

70

80

90

100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 3 5 7 9 15 30 45 60

m
A

P

A
v

er
ag

e
p

at
te

rn
 a

m
o

u
n

t

M
il

li
o
n

s

Colossal time (second)

#Patt. Ox5k #Patt. Ox105k #Patt. Paris6k

QB mAP Ox5k QB mAP Ox105k QB mAP Paris6k

QB+SP mAP Ox5k QB+SP mAP Ox105k QB+SP mAP Paris6k

Figure 6.10: Number of patterns versus time. The discovery of rest patterns yielded
no big improvement in mAP after it had produced enough core patterns about 100k

patterns, which were processed within 3 seconds.

6.8 Retrieval result examples and analysis

In this section, we select the example of the retrieved images using all previously eval-
uated methods e.g., BoVW, AQE, QB, and QBSP to show how our proposed methods
are good in the different cases e.g., a normal query, a small object, a low resolution, and
also a noisy case.

6.8.1 Normal query case

We selected the sample of this normal query case from the result of Oxford 1M dataset,
on the topic of “christ church 5”. As result (figure 6.11), standard BoVW provide the
first round retrieved images with AP of 41.60%, AQE has an AP of 80.82%, our QB has
an AP of 88.84%, and the best one is QB + SP with an AP of 96.58% respectively.

Figure 6.11: The illustration of true-positive list on a retrieved images using a normal
query with BoVW, AQE, QB, and QB + SP

98

Retrieval result examples and analysis

Normal query case: BoVW

Figure 6.12: BoVW Matching result with a normal query. AP = 40.16%

Normal query case: AQE

Figure 6.13: AQE Matching result with a normal query. AP = 80.82%

99

Chapter 6. Experimental setup, evaluations, and discussion

Normal query case: QB

Figure 6.14: QB Matching result with a normal query. AP = 88.84%

Normal query case: QBSP

Figure 6.15: QB + SP Matching result with a normal query. AP = 96.58%

100

Retrieval result examples and analysis

6.8.2 Small object query case

We selected the sample of this small object query case from the result of Oxford 105k
dataset, on the topic of “magdalen 2”. As result (figure 6.16), standard BoVW provide
the first round retrieved images with AP of 57.47%, AQE has an AP of 66.51%, our QB
has an AP of 80.75%, and the best one is QB + SP with an AP of 81.68% respectively.

Figure 6.16: The illustration of true-positive list on a retrieved images using a small
object query image with BoVW, AQE, QB, and QB + SP

Small object query case: BoVW

Figure 6.17: BoVW Matching result with a small object query. AP = 57.47%

101

Chapter 6. Experimental setup, evaluations, and discussion

Small object query case: AQE

Figure 6.18: AQE Matching result with a small object query. AP = 66.51%

Small object query case: QB

Figure 6.19: QB Matching result with a small object query. AP = 80.75%

102

Retrieval result examples and analysis

Small object query case: QBSP

Figure 6.20: QB + SP Matching result with a small object query. AP = 81.68%

6.8.3 Low resolution query case

We selected the sample of this low resolution query case (20% scaled of original) from
the result of Paris 1M dataset, on the topic of “moulinrouge 2”. As result (figure 6.21),
standard BoVW provide the first round retrieved images with AP of 45.59%, AQE has
an AP of 45.59%, our QB has an AP of 91.20%, and the best one is QB + SP with an
AP of 92.30% respectively.

Figure 6.21: The illustration of true-positive list on a retrieved images using a low
resolution query image with BoVW, AQE, QB, and QB + SP

103

Chapter 6. Experimental setup, evaluations, and discussion

Low resolution query case: BoVW

Figure 6.22: BoVW Matching result with a 20% scale of query. AP = 45.59%

Low resolution query case: AQE

Figure 6.23: AQE Matching result with a 20% scale of query. AP = 59.48%

Low resolution query case: QB

Figure 6.24: QB Matching result with a 20% scale of query. AP = 91.2%

104

Retrieval result examples and analysis

Low resolution query case: QBSP

Figure 6.25: QB + SP Matching result with a 20% scale of query. AP = 92.3%

6.8.4 Noisy query case

We selected the sample of this noisy query case from the result of Paris 6k dataset, on
the topic of “defense2”. As result (figure 6.26), standard BoVW provide the first round
retrieved images with AP of 8.20%, AQE has an AP of 37.47%, our QB has an AP of
1.74%, and the best one is QB + SP with an AP of 72.52% respectively.

Figure 6.26: The illustration of true-positive list on a retrieved images using a noisy
query image with BoVW, AQE, QB, and QB + SP

Low resolution query case: BoVW

Figure 6.27: BoVW Matching result with a noisy query. AP = 8.20%

105

Chapter 6. Experimental setup, evaluations, and discussion

Low resolution query case: AQE

Figure 6.28: AQE Matching result with a noisy query. AP = 37.47%

Low resolution query case: QB (failed)

Figure 6.29: QB Matching result with a noisy query. AP = 1.74%

Low resolution query case: QBSP

Figure 6.30: QB + SP Matching result with a noisy query. AP = 72.52%

106

Discussion

6.9 Discussion

We presented QB which aimed for relaxing the spatial verification constraint from a
degraded query image. Indeed, QB has several benefits that directly derived from FIM
tools as FIM can be used to discover the existing of the co-occurring of visual word
groups that forming a visual object. Together with QB also help in understanding more
on the target object as the target object can be learn by using multiple image together.
In the same time, using QB need to target on the datasets with some criteria, at least,
the first round result has to be good enough at some level. So, in this section, we will
discuss in details about the benefits, weakness, and the limitation of using our QB.

6.9.1 Benefits of using QB

As we employed FIM for finding patterns that co-occurring throughout of multiple rel-
evant images, the major benefit of FIM is that the discovered patterns will be corre-
sponded to the object and has less ambiguity meaning of the overall patterns regardless
of the specific foreground and background region. So, by using multiple images, QB will
help understand more on the target object and its context. In this sense, the context
surrounding an object can be learned, and also the hidden visual words from the other
view angles can also be learned. Moreover, since our methods can help in learning about
the object and its context, rejecting the irrelevant visual words will also be easy. The
problem that QB can handle or reject quite well are, object occlusions, misleading visual
words, not useful visual words, and the visual words that not much clearly related to
the target object.

6.9.1.1 Context discovery

QB can help learning on the context for a specific target object. The first selected
example, a query is given as in the figure 6.31, as to search for the object within the
specific ROI.

Q

Figure 6.31: A query example with the feature point within a specified ROI.

107

Chapter 6. Experimental setup, evaluations, and discussion

C
C

C

C

C
C

CC

C

C

Q

Q

Q

Q

Q

QQ

Q

Q
Q

Reference image 1 Reference image 2

C
C

C

C

C

Q

Q

QQ

Q

C C

C
C

C

Q

Q

Q Q

Q

Reference image 2 Reference image 3

C C

C
C

C

Q

Q

Q Q

Q

C
C

C
C

C

Q

Q

Q Q

Q

Reference image 3 Reference image 4

Figure 6.32: The query example for QB context discovery shows the matching of
query ‘Q’s are belonging to the target object, while the matching of context ‘C’s are

belonging to the context information surrounding the target object.

The QB task is to find the co-occurrences of patterns between the top relevant images
regardless the foreground and background region. By doing this, each of the images will
be discovered for the patterns both inside and outside of the target ROI as shown as ‘Q’
(matching to the target object) and ‘C’ (matching to the surrounding context) in the
figure 6.32.

108

Discussion

C
C

C C

C
C

C

C

Figure 6.33: The contexts discovered from top 4 relevant images by using QB. As
‘C’s represent the context such as the surrounding building is always beside the target
building, therefore, the beside building can be used in retrieving the target building

correctly.

Q

Q

Q
Q

Q

Q

Query image Reference image

(a)

C
Q

C

C
C

C

C
C
C

Q

Q
Q

Q

Q

Query image Reference image

(b)

Figure 6.34: The matching result shows how the selected example matches to the
query image for a topic “defense 2’ on a Paris 1M dataset. (A) The matching by using
AQE will calculating the similarity within only the specified ROI, in this example, AQE
obtain an AP of 27.40%. (B) The matching by using our QBSP will utilize the context
information to help in finding the target query, in this example, our QBSP obtain an

AP of 71.35%.

109

Chapter 6. Experimental setup, evaluations, and discussion

Therefore, our QB not just only discover the patterns within the target object, but also
it can find the context around (see figure 6.33) to help explain on the object itself. As
result, using context can help improve the final retrieval performance as shown in the
figure 6.34. Another example of context discovery is as the following selected query in
figure 6.35. Also, we show the context (red ellipses) can be found in this second example
in the figure 6.36.

Q

Figure 6.35: A query example with the feature point within a specified ROI.

C

Reference image 1 Reference image 2

C

Reference image 2 Reference image 3

Reference image 3 Reference image 4

Figure 6.36: The query example for QB context discovery shows the matching of
query ‘green ellipse’s are belonging to the target object, while the matching of context
‘red ellipse’s are belonging to the context information surrounding the target object.

110

Discussion

Query image Reference image

(a)

Query image Reference image

(b)

Figure 6.37: The matching result shows how the selected example matches to the
query image for a topic “defense 2’ on a Paris 1M dataset. (A) The matching by using
AQE will calculating the similarity within only the specified ROI, in this example, AQE
obtain an AP of 28.86%. (B) The matching by using our QBSP will utilize the context
information to help in finding the target query, in this example, our QBSP obtain an

AP of 83.52%.

As result, using context can help improve the final retrieval performance as shown in
the figure 6.37.

6.9.1.2 Hidden visual words discovery

In some cases, a given query image does not provided in clear and low detail of the
texture on a target object. Even generally an object is not just a planar, the detail on
the other perspectives can help in learning the hidden feature by using multiple view
angle. The example of this situation is shown in the figure 6.38. As we can see the
matching result, the figure 6.39 shows that our QB can find the hidden visual words
within the target query image, much higher than what AQE did. And the figure 6.40
shows the result of retrieving with hidden visual word discovery achieved much better
performance (AQE with AP of 23.67%, QB with AP of 44.77%).

111

Chapter 6. Experimental setup, evaluations, and discussion

Query topic: eiffel_3

Q

Matching result can be a few

Figure 6.38: A query example with the feature point within a specified ROI.

AQE QB

Figure 6.39: The query example for QB context discovery shows the matching of
query ‘green ellipse’s are belonging to the target object, while the matching of context
‘red ellipse’s are belonging to the context information surrounding the target object.

112

Discussion

Figure 6.40: The selected results show the top 20 retrieved images from of the different
method as by using AQE (top row), and our QB with the hidden visual words (bottom
row). Top 100 result (true positive is in green) shows that our QB achieved better

performance as AQE got an AP of 23.67% while our QB got an AP of 44.77%.

6.9.1.3 Reject irrelevant words

Also, our QB has better accurate in order to reject an irrelevant visual words. Since we
employed FIM, QB then identify these problems wisely e.g., object occlusions, misleading
visual words, and not clearly related to the target object. So, the following example
shows the cases when our QB rejecting an irrelevant visual words perfectly.

Figure 6.41: The example shows how AQE (left) and QB (right) reject irrelevant
visual words in the different situation.

113

Chapter 6. Experimental setup, evaluations, and discussion

Figure 6.42: The example shows how AQE (left) and QB (right) reject irrelevant
visual words in the different situation.

114

Discussion

6.9.2 QB Limitations

In this section, we will discuss about the weakness and limitations of our QB-based
approach. To reach the limitation, we tested our QB with the other datasets, as to
test with the different target object perspective, database size, and moreover, as long as
currently we conduct our former experiment with the image database, in this section,
we also discuss how do we apply QB with the video database.

6.9.2.1 Experiments with the other datasets

For the previous experiments, we did the experiments based on Oxford and Paris dataset
which are focused on retrieving the landmark images. In this section, we include the
external 3 datasets, which are Stanford mobile visual search (MVS) [71] and the TrecVid
instance search (INS) 2011-2013, for extending our experiments in term of the target
objective and the type of the database.

Stanford mobile visual search dataset The dataset comes with 8 query topics,
namely, book covers, business cards, cd covers, dvd covers, landmarks, museum paint-
ings, prints, and video frames. The dataset has several key characteristics lacking in
existing datasets: rigid objects, widely varying lighting conditions, perspective distor-
tion, foreground and background clutter, realistic ground-truth reference data, and query
data collected from heterogeneous low and high-end camera phones. However, since the
dataset itself provide us only one true positive per query topic (see figure 6.43), the
integration of QB is not possible as the FIM need multiple relevant images to find the
patterns among the retrieved images.

Q1

R1

R2

R3

R4

R5

R6

R7

QB

Figure 6.43: A trial illustration on integration of MVS dataset with our QB.

115

Chapter 6. Experimental setup, evaluations, and discussion

Q11
R1

1

R2

1

R3

1

R4

1

R5

1

R6

1

R7

1

R1

2

R1

3

R1

4

R1

5

R1

6

R1

7

R1

8

R2

2

R2

3

R2

4

R2

5

R3

2

R4

2

R5

2

R6

2

R7

2

R3

3

R4

3

R5

3

R6

3

R7

3

R3

4

R5

4

R6

4

R3

5

R5

5

R6

5

R3

6

R6

6

R6

7

R1

9

Q12

Q13

Q14

. R1

1

R2

1

R3

1

R4

1

R5

1

R6

1

R7

1

R1

2

R1

3

R1

4

R1

5

R2

2

R2

3

R3

2

R4

2

R5

2

R6

2

R7

2

R3

3

R4

3

R5

3

R6

3

R7

3

R3

4

R5

4

R6

4

R3

5

R5

5

R6

5

R3

6

R3

7

R3

8

R3

9

R7

4

R7

5

R7

6

R5

6

R5

7

.

.

MAX

Late fusion
.

QB Q21

QB Q22

Figure 6.44: An illustration on how to integrate video frames from the INS datasets
with our QB. The rectangle is covered on the first frame each shot result, aimed for

being a representative frame during a spatial verification process of QBSP.

TrecVid instance search dataset The datasets are obtained from the a yearly work-
shop namely TRECVID instance search task [72]. There are 2 datasets which were
integrated to be evaluated in our work, namely, instance search (INS), in particular,
INS 2011 and INS 2013. The dataset are given as a collection of test clips (files) and a
collection of queries that delimit a person, object, or place entity in some example video,
locate for each query up to the 1,000 clips most likely to contain a recognizable instance
of the entity. The objective of this retrieval is, a run return many fewer than 1,000 clips
that related to the given query which will be evaluated by using mean average precision
as an evaluation metric.

Since the datasets are based on video frame, here we will discuss a basic way to integrate
our QB with such video frames. As illustrated in the figure 6.44, a query is provided
with multiple frames per one query. Each sub query need to be searched separately and
finally being fused by using max late fusion for scoring scheme. The integration to QB
is as follow:

1. Each query need to be searched separately to produce the result for each of sub-
query as a ranked list of highly ranked video.

2. QB also need to be integrated at each of sub-result by selecting the first frame of
each top relevant shot for being verified in the SP step. The verified shot that pass
the ADINT threshold will be regarded as a relevant.

3. The verified shots will be converted into a transaction regarding as all frames
within a shot is of one transaction.

116

Discussion

48.61

41.87
46.54

39.28

20

25

30

35

40

45

50

55

60

BoVW AQE QB QBSP

m
A

P

Methods

(a)

21.82

18.41

15

17

19

21

23

25

27

29

BoVW QBSP

m
A

P

Methods

(b)

Figure 6.45: The evaluation result for (A) INS2011 and (B) INS2013 datasets were
run with BoVW, AQE, QB, QBSP. As result, QBSP has lower mAP than the other

methods.

4. Process QB as normally did on an image-type dataset to produce the final product
as a second round query image.

5. Retrieving all the second round queries separately and fusing all the result by using
max late fusion scoring scheme.

Therefore, we evaluate the performance of INS2011 dataset with standard BoVW, AQE,
QB, and QBSP. And we evaluate the performance of INS2013 dataset with BoVW and
QBSP. The evaluation result is reported in the figure 6.45. As result, our QBSP drop
the overall performance, and much lower than all other methods on both INS2011 and
INS2013. This imply that, we can find the limitation and the edge conditions where our
QBSP cannot help improving the performance for these datasets.

To do that, we then look into more details at the topic level as shown in the figure 6.46a.
According to the result, there is only one case (topic ‘9032’) that QBSP win all the other
methods, while mostly QBSP has lower APs than the others.

117

Chapter 6. Experimental setup, evaluations, and discussion

0

2
0

4
0

6
0

8
0

1
0
0

mAP

Q
u

ery
 to

p
ics

B
o
V

W

A
Q

E

Q
B

Q
B

S
P

(a)

0

2
0

4
0

6
0

8
0

1
0
0

mAP

Q
u

ery
 to

p
ics (su

b
-q

u
ery

 1
)

B
o
V

W

Q
B

S
P

(b)

F
igure

6.46:
T

he
perform

ance
evaluations

on
IN

S2011
dataset

show
s

(A
)

T
he

A
Ps

ofB
oV

W
,A

Q
E,Q

B
,and

Q
B

SP
for

each
query

topic.
(B

)
T

he
A

Ps
ofB

oV
W

and
Q

B
SP

for
a

sub-query
no.1

ofeach
query

topic.

118

Discussion

However, we also look into more details, specifically at the sub-query no.1 for each topic,
which we reported in the figure 6.46b. The result shown that, our QBSP wins on 8 top-
ics (9024, 9028, 9029, 9032, 9033, 9036, 9037, and 9046) Even our method successfully
improve the performance for these topics, however, these are just a small number com-
paring to all sub topic together. Thereby, it imply that these topics are important and
will explain why our QBSP works and why it does not works. The examples of success-
ful topic by using QBSP are shown in the figure 6.47 (9028), figure 6.48 (9029), and
figure 6.49 (9033).

Working topic: 9028 The topic 9028 provides an airplane as a target query. As re-
sult (see figure 6.47), BoVW produced first round retrieval result with several big enough
airplane. Also, the AP is quite good enough as 52.14%. Therefore, our QBSP will do
mining with a correct focus on a target airplane, and finally improve the retrieval per-
formance to 80.98%. Together as the background of this airplane are somehow support
this airplane object. Thus, the learned context may also help in this query case.

Working topic: 9029 The topic 9029 provides a human as a target object. As result
(see figure 6.48), BoVW produced first round retrieval result of with the same people
that appear within the same room. This mean, QBSP will surely take the advantage
of context discovery from the background as found to be the room texture, wall, etc.
The result of BoVW show an AP is quite good enough at 51.26%. However, the target
object is human that usually deformable and unluckily that this human wear the cloth
that has less texture, the foreground itself will not help much in this retrieval, and also
QBSP may regard this foreground as an object occlusion of the background. Therefore,
QBSP improve this result a little to 64.12%, that probably come from the pure benefit
of using the learned contexts.

Working topic: 9033 The topic 9033 provides a balloon as a target query. However,
the target query is mostly occluded by the other balloons. As result (see figure 6.49),
BoVW produced first round retrieval result with all the same environment as seen in the
query image. The top retrieved images are consisted with ‘that balloon’, other balloons,
the same grass field, the same view angle to the same mountain area. Also, at some
result, the there are less area of occlusion which allow QBSP to learn more the hidden
visual words of this target balloon. All these benefit together, Our methods boost the
performance from BoVW as an AP of 40.07% to reach the final retrieval performance
to 47.61%.

119

Chapter 6. Experimental setup, evaluations, and discussion

(a) Query

(c) BoVW: AP of 51.14%

(e) QBSP: AP of 80.98%

Figure 6.47: The working example of QB with INS2011 dataset (9028).

120

Discussion

(a) Query

(c) BoVW: AP of 51.26%

(e) QBSP: AP of 64.12%

Figure 6.48: The working example of QB with INS2011 dataset (9029).

121

Chapter 6. Experimental setup, evaluations, and discussion

(a) Query

(c) BoVW: AP of 40.07%

(e) QBSP: AP of 47.61%

Figure 6.49: The working example of QB with INS2011 dataset (9033).

122

Discussion

Most cases does not work However, in the most cases of the query topics show that
QBSP does not work well with INS dataset. There are two main reason, one is there
are no context to be able to learn on the top relevant images, second is the target object
itself do not have much stable visual words enough to construct patterns. The example
of this case is the topic 9035 as in the figure 6.50. The topic 9035 provides a turtle as
the targeted query object. As result, BoVW returns much number of turtle images with
high variations as an AP of 18.72%, so QBSP cannot find the enough patterns to infer
the focus to the turtle and construct pattern correctly on it. Also, the background are
rather different in all retrieved images. So, QBSP drops most of visual words and search
for the second round with only AP of 3.85%.

6.9.2.2 Target dataset characteristics

In this context, we then be able to summarize that, QB will work perfectly when original
BoVW provides good enough result, e.g., some number of an object that visually similar
to the query image, and it will boost much performance when the object is big enough
and not too small. QB will also help improving the performance by using context,
e.g., the query is to find an object that does not move such as a landmark, or to find
an object that mostly appear together with some specific environment. So, the context
information e.g., building besides, object beside, background, will help much in extending
the description to the target object.

6.9.2.3 Weakness summarization

For the weakness of QB is that QB will not work if only one true positive result is
provided, so there will be no object consistency to be discovered, which is the situation of
the Stanford MVS dataset. Another thing is, QB cannot used to search for a deformable
object, e.g., cloth, animal, texture less object etc. The mentioned situations are mostly
belong as the characteristic of INS2011 and INS2013 dataset. So, that is the reason why
QB works very well with Oxford and Paris dataset (landmark) and does not work with
INS dataset.

Another thing to be mentioned is that, the retrieved results of QB are narrow in term
of variation. This is because of QB try to find thing that similar to each others out of
the given relevancies. Therefore, in case of the work that need to get the wider scope of
the result, QB will not answer to the question.

123

Chapter 6. Experimental setup, evaluations, and discussion

(a) Query

(c) BoVW: AP of 18.72%

(e) QBSP: AP of 3.85%

Figure 6.50: The failure example of QB with INS2011 dataset (9035).

124

Chapter

7
Conclusions

“There is no real ending. It’s just the place where
you stop the story.”

— Frank Herbert

In this chapter, we summarize the achievements of the work presented in this thesis and
discuss in future research directions.

7.1 Achievements remark

In this thesis, we have proposed several methods for improving object-based image and
video retrieval by major in relying on the use of data mining technique for discovering
the consistency of patterns. The performance is evaluated considering on all standard
datasets (Oxford 5k, Oxford 105k, and Paris 6k), including our newly extended datasets
that merged MIR Flickr 1M together as a large distractor (Oxford 1M and Paris 1M).
In chapter 3, we have proposed the way to integrate data mining technique, in help
constructing the better representative query for the second round retrieval, which is
known as relevance feedback or query expansion. Query Bootstrapping (QB) is proposed
as a variant of Query Expansion (QE), to better exploit the correlation in the first-round
retrievals. The aimed is to overcome the problem of the strong dependence on a query
image in spatial verification in AQE. We employed a principled data mining tool, namely,
frequent itemset mining (FIM), to find less ambiguous but meaningful co-occurring visual
words (patterns) from the initial ranked list.

125

Chapter 7. Conclusions

In the same chapter, we further presented an on-the-fly support tuning algorithm in
section 3.3.2 for providing the best locally optimal support values for each of a query
topic independently by regarding in tuning the best minsup and maxsup for the visual
mining process. Although the idea is good and reasonable, these results have still not
been topped, and may appeared to be below the former baseline, by the irrelevant of
the retrieved images from BoVW itself.

In chapter 4, we proposed a proper way to utilize the spatial verification with our mining
components. By integrating a LO-RANSAC algorithm for filtering the whole image
rather than filtering deeply into the visual word level. Therefore, our QB can take much
advantage as to mine the patterns with more focus to the target object. In addition, we
presented an automated inlier threshold algorithm in section 4.3.2 for tuning an inlier
threshold adaptively for LO-RANSAC spatial verification.

Since we proposed all the work together that aimed for finding the best pattern out of the
relevant images. These patterns are regarded as the flag of frequent object candidate fi.
Therefore, the patterns found by FIM are taken into account in a new weighting scheme
called tf-fi-idf .

Moreover, in the chapter 5, we presented how to reduce the time in handling images with
large number of visual words. Usually, these kind of transaction built up by using image
words will caused too large number of patterns. By integrate the existing technique
called transaction transposition will help us reduce the time in fining pattern quite
significantly.

The overall steps of our proposed methods can be roughly go through as the following:

1. Baseline BoVW
The input query image is processed using the standard BoVW-based image re-
trieval to obtain the first-round result (Ranked List 1).

2. Spatial verification (SP, optional)
In this optional step, LO-RANSAC verifies the consistency of ranked list (returning
a Verified Ranked List 1). Here, the spatial topology of the local features in each
image in the Ranked List 1 is compared with that of the query image, and if the
topologies are determined to be similar, the image is added to the verified list.
The key parameter of LO-RANSAC, namely, the inlier threshold, is automatically
determined.

3. Query Bootstrapping (QB)
The list (either verified or not verified) is fed to the FIM module in order to find
frequently co-occurring visual words. The parameters of FIM, namely, minsup

126

Future work

and maxsup, are automatically determined. The result is used to determine tf-
fi-idf weights, and the query vector for the second round is generated. Finally,
second-round retrieval is executed with the generated second round query using a
standard BoVW framework.

To the best of our knowledge, we are the first to investigate auto-tuning of the support
parameter for FIM for a visual mining application and auto-tuning of the inlier thresh-
old for LO-RANSAC geometric verifications. We presented head-to-head comparisons
with state-of-the-art methods in terms of performance, robustness, and execution time.
We evaluated our approach with the standard evaluation protocol on three well-known
benchmark datasets, namely, Oxford 5k, Oxford 105k, and Paris 6k and also with our
extended Oxford 1M and Paris 1M. The results show our approach has reached a new
level of performance far beyond that of the classic BoVW framework or even AQE.

7.2 Future work

This section discusses some potentially promising directions for future work, as well as
the speed issues in both a large scale object-based image and video retrieval and also the
way to properly handling large number of patterns for which we believe it is important
for researchers to solve.

One possibility to extend this research is that the way to proper handle each type of
query properly. As we know there is a problem in the colossal patterns, if we can detect
the task in advance e.g., “Hard” query type. The automatic or the hybrid model for
AQE/QBSP will be much useful to reduce the overall time cunsumption taken by FIM
module when colossal pattern is detected and then let AQE handles the task.

Another possibility is that integrating the binary feature is still good to be discovered
with this work. We did some experiment and found that, the binary feature like ORB
feature is contain some compliment ability to our current SIFT feature. For example,
ORB is much faster in order to extract the feature from each image, while the actual
descriptor is very lightweight comparing to the traditional SIFT. We did some test and
we also found SIFT is good for landmark and the object that may have some perspective.
In contrast, ORB feature is very good for the planar object like book cover cd/dvd cover.
So, they are somehow compliment to each other, and it might be quite interesting to be
discovered.

127

Appendix

A
PVSS: Portable Visual Search

Service for Researchers

A.1 Introduction

Image retrieval researchers aim to build good algorithms and devise methods to produce
accurate ranked lists. However, the search results themselves appear rather repetitious,
and the experience of viewing them is akin to listening to the same song 100 times a
day. Imagine a better search in which the researcher has a ready-to-use demonstration
interface for showing his results to audiences who can interactively send image queries
and see the results effortlessly; this is our aim.

We present a Portable Visual Search Service for a researcher who desires to make his
or her algorithm appear to be as “cool” as the best interactive demos at image re-
trieval conferences. Our service is a handy package, powered by VMWare virtualization
technology, that is booted and served locally within a local network on a medium-spec
laptop PC. The package contains all the necessary stuff to launch an on-site demo, e.g.,
a database, algorithm, and libraries. Moreover, our service is accessible using standard
web browsers and client architectures, e.g., PC, iPhone, iPad, and Android.

This interactive system has been tested together with a large database at conferences
and other events. The audience of a demo/poster session was impressed by the features
of our service. In this context, our service handles the user interaction with the audience
and gives researchers more freedom to explain their algorithm.

129

Appendix A. PVSS: Portable Visual Search Service for Researchers

(b)

(a)

(c)

Figure A.1: A situation at the poster where a researcher (a) presents the work together
with an on-site demo-ready (b) for serving image query from audiences (c).

A.1.1 Motivation

Research in the field of image retrieval seems delightful at first glance. New grad stu-
dents inevitably expect that their research and results will tangibly reflect their vision.
However, as experienced researchers know, studying image retrieval is not as easy as
photo editing and is not interesting in terms of visual representation. Most of the time,
the daily practice of research feels more like coding on 80s monochrome monitors and
evaluations of retrieval results are akin to listening to the same music playlist over and
over.

Firstly, researchers may have to examine several versions of branched algorithms. In
order to see the retrieved images from each version that they have labored on over the
holidays, they need to make use of a non-interactive tool, such as the image viewer in
MATLAB or a dialog pop-up with OpenCV, or they may even manually open image files
one-by-one to see what the result is. How does the prospect of checking for differences
among several ranked lists containing a hundred images sound to you? Researchers
regularly face problems in which the amount of returned images is far too large for
manual checking. Manually selecting images is acceptable if the purpose is to insert a
few figures in a publication. However, a smart researcher might write an extra piece
of code to collage images together in one click. A bit more dynamic result can be
had by generating a static HTML file for visualizing a ranked list on a web browser.
Accordingly, a more sophisticated approach with a more dynamic flow will yield more
impressive results as far as their appearance goes and would at least be a source of
satisfaction for researchers trying to present their results.

130

Introduction

Secondly, researchers often have to make oral presentations and demonstrate their algo-
rithms. Here, what are the things they may need to show to audience? Static images? A
flat poster? It should be the algorithm itself. And it should be in a way that impresses
the audience. However, in conference sessions, they face crowds of strangers. A rather
painful experience awaits those hoping to attract an audience with only static images on
a poster. They may lose confidence and fail to convey the usefulness of their algorithm.
The better solution would be running a working system that takes query images from
audience members and returns the retrieved results directly to their mobiles so they can
interactively explore what the researcher is trying to explain.

Thirdly, the result of building an interactive demo for a retrieval system will depend on
the size of the database. For a small database, a laptop PC or a mobile device will be
enough to run a standalone retrieval system. However, if the system has to be installed
or configured on the user’s device, this might be too bothersome for the audience and
would take up the researcher’s time by his or her providing support for different kinds of
devices. Essentially, the only solution to this problem is to have less user configuration
and the capability of handling a large database that cannot be fitted or compressed into
a mobile device as in mobile visual search (MVS) [87, 88, 92, 93, 102]. Currently, this
is only possible by hosting the system on a high-spec server and by using a standard
web-based interface for handling image queries and visualizing the retrieved images.
However, in going to an on-site demonstration, one faces several uncontrollable factors.
One of those is of course whether or not an Internet connection will be available at the
time of the presentation.

We propose the framework shown in figure A.2 as a way of ameliorating the above
situations. The model of this framework handles two important aspects of demonstrating
image retrieval research, i.e., taking query images and returning result images. The
model is simple in that a researcher can easily connect their complex algorithm for core
retrievals in a back-end fashion. Our framework has several sub-modules to handle a
complete one-round retrieval, from taking an image query from a user and handing it to
the API of the algorithm, to getting the retrieved result and visualizing it on the user’s
browser.

To enable the service even without an Internet connection, we exploited the power
of virtualization technology, namely, VMWare, to pack the whole server configuration
including an algorithm, a database, reference images, libraries, and even a web-server
into one image file. Therefore, the researcher is able to serve a live demo with a minimum
of requirements, i.e., all that is needed is his or her laptop with an Ethernet or wireless
connection. The demo runs on a laptop equipped with either a Windows or Mac Os,
and with Linux in the configured algorithm environment. Moreover, the framework is

131

Appendix A. PVSS: Portable Visual Search Service for Researchers

Host

Guest H
et

er
o

g
en

eo
u

s
A

cc
es

s

Medium-spec PC

Indexing Images

Image Retrieval Service

…

PC

iPad

iPhone

Android

Client UI

Visualization Layer

Intranet

Web-based Service Handler

Figure A.2: Overall architecture of our framework consisting of an image retrieval
service, which is connected to a web-based service handler that runs using a web server
under a virtualization layer, a host computer, and a client web interface for heteroge-

neous devices.

designed for a client-server architecture with the use of web-server technology on a server
and a standard web browser on a client. This combination makes it easy for audiences
at conferences to try the presenter’s algorithm on their own devices, as illustrated in
Figure A.1.

Our paper is organized as follows. The related work is described in section A.1.2. The
framework is described in section A.2, including the architecture of the server module
and client module. The paper concludes with discussion and possible future work in
section A.2.3.

A.1.2 Related work

Client-server architectures for image retrieval are implemented mostly on high-spec
servers and with a specific application implemented in a platform-dependent program-
ming language at the client.

There are a number of studies on client-server based image retrieval. Regarding those
on large-scale databases, examples include the studies of Zhu et al. [78, 122], which used
a database the size of half terabyte. On the other hand, some studies, e.g., [87, 88, 92,
93, 102], compress the database so it can be run directly on a mobile device; this leads
to trade-offs in performance and information in the result.

132

PVSS architecture

We focus on the accuracy and detail of the meta-data, and this means we are interested
in a large-scale database system with portability. Here, VMWare [153] and VirtualBox
[154] are available as virtualization technologies . We chose VMWare in our current
version on account of its performance.

A.2 PVSS architecture

We devised a portable visual search service (PVSS) that easily connects with a core
image retrieval module. By utilizing the client-server architecture, a connection can be
made using any available network, even without the Internet. The overall architecture
of PVSS is shown in Figure A.2.

Our service framework has two major parts, the server side (section ??) and the client
side (section A.2.2).

A.2.1 Server modules

The server service is designed to be independent of the core retrieval module. However,
the modules are easily connected with few configuration and data interchangeably rules.

Web-based Service handler The service handler is a connection point between a
user request from the web-based client side and the core algorithm of the image retrieval
module (Figure A.3).

Once a service is requested from a client browser, the web server establishes a connection
with a specific session id followed by delivery of an HTML5 based web interface to the
browser. The user is then able to submit a query using the provided options, which is
handled at the server using the HTTP POST method. AJAX is used in order to wait
for a response such as a retrieval result or error message.

On the server side, the connection between web-based service handle and image retrieval
service is designed to be simple with no server modifications or reconfigurations. We im-
plemented this connection based on a structural text file with delimiters. The connection
is made by reading and writing files in a user space file system.

There are two files involved in transferring data, a query-specific file and a result-specific
file. In the query-specific file, the image queries are queued for being read out and pro-
cessed. The query file is named “queries.txt”, and is located on a specific pre-configured

133

Appendix A. PVSS: Portable Visual Search Service for Researchers

W
eb

-b
as

ed
 S

e
rv

ic
e

H
an

d
le

r

Image Retrieval

Service File

System

AJAX/

JSON

Client

Web Interface

Web Server

HTML5 + JavaScriptApplication

Visualization Layer

Query/

Params

Result/

Info

Figure A.3: Service connection model for transferring data between core retrieval
module and client web interface.

path for both the web-based service handler and image retrieval module. The query
template file has the following code 10:

query_image = path1 | path2 |...| pathN
result = directory
option =opt1|opt2 |...| optM
END
query_image = path1 | path2 |...| pathN
result_path = directory
option =opt1|opt2 |...| optM
END
...

Listing A.1: Query template

The image retrieval module reads the above file according to the template.

• query image is the image path, which can be allocated to multiple images at once
with the delimiter ‘|’.

• result is a directory to the location where the retrieval result will be placed.

• option is an additional parameter that can be set by the client.

We encourage queries to be handled in parallel, if possible, so that they can be processed
simultaneously.

For responding to a query, the result-specific file is provided for describing the retrieved
images, and it has to be placed on a specified result path with the file name “result.txt”
for each query request. Once the web-based service handler detects an existing result

134

PVSS architecture

file, the corresponding data will be read out and sent back to the client. The template
for “result.txt” is as follows:

status = message (text),
success (text),
error (text)
total_image =X
image =path
score =val
ext_info = info1 | info2 |...| infoY
image =path
score =val
ext_info = info1 | info2 |...| infoY
...

Listing A.2: Result template

where status can be any kind of information for intermediately informing the user before
the process finishes. For example, “status=message(Feature extraction..)” will be inter-
preted as an intermediate message to show with the client-side interface. Other examples
include “status=error(Image too small)” and “status=success(Retrieval done!)”.

total image is the number of images in the result file. For each image, there is the field
image specifying the image path, and a similarity score score for comparing it with the
given query. Extra information can be embedded in the ext info field.

Core image retrieval service The core image retrieval algorithm can be written
in any programming language. In order to get the query request, researcher have to
connect their module to the connection point provided by the web-based service han-
dler. Additionally, the “queries.txt” file is read to process the individual query, and the
corresponding “result.txt” is returned in a specific result directory.

Virtualization layer Portability issues arise when a live demo is unable to access
the Internet. We put our framework on top of VMWare for hosting the system on a
virtualization layer under any host machine. After the system is booted up, clients can
access the service through the same network. An example of the best-case scenario
(Figure A.4) is the presenter running a live demo on a computer connected to the
conference network using a LAN cable, and the live demo is served to the audience’s
devices seamlessly as the network also has WiFi.

135

Appendix A. PVSS: Portable Visual Search Service for Researchers

Figure A.4: Best case scenario where a live demo is hosted on a machine connected
to a network using a wired connection and it is able to serve the audience via a wireless

connection.

A.2.2 Client modules

Client side is designed to support heterogeneous client devices. We implemented the
client service based on an HTML5 technology, which can be accessed by most recent PC
and mobile browsers.

Client HTML5-based interface Figure A.5 and Figure A.6 respectively show ex-
amples of client interfaces for a PC and a mobile browser. The overall user interface
is composed of two main sections, the query section (at the top of the web page) and
result section (at the bottom of the web page).

The query section is to review the query that was submitted by the user. The core
retrieval module can accept multiple query images for each retrieval, and the user can
send all of them at once. The result section visualizes the retrieved images, which can
be images, videos, and associated meta-data, such as a retrieval similarity score or a link
to a video.

We also provide input options that may be useful to the operation of the core retrieval
module. These can be parameters and specific input that need to be specified by the
users, e.g., RANSAC on/off, debug mode on/off, etc.

Query and result handling component According to Figure A.3, the sent query
is composed of images and parameters, and the received result is an image list with
meta-data.

136

PVSS architecture

Figure A.5: Example of client-side user interface on a PC browser.

Figure A.6: Example of client-side user interface on a mobile browser.

For sending an image query, we provide several query sending modules based on the
HTML5 web-RTC standard, including functionalities for drag-and-drop uploading of
image(s) from the local machine (PC), taking a photo using the camera of a device
(PC/mobile), and uploading images from a device (PC/mobile).

When the server is connected to a network with Internet access, the querying func-
tion is extended to external online resources, with functionalities such as dragging and
dropping image URLs from other web sites (PC) and text-to-image retrieval (PC). We

137

Appendix A. PVSS: Portable Visual Search Service for Researchers

implemented the text-to-image option by crawling images from Google image search us-
ing a specific keyword, then feeding the search result to the core retrieval module. This
text-to-image functionality is an interesting option for using resources from the Internet
instantly.

In order to transfer data from the client interface to the web-based service handler, we
use AJAX to send a query as a binary stream and wait for the result. Contrastingly,
the data sent from the web-based service handler will be in the form of an array of
key-value pairs embedded in a JSON string. The format of this JSON result is based
on the format of the result template.

Lastly, in order to interpret the retrieved results in the result area, the client interface
waits for a “status=success()” as an acknowledgment to start interpreting the results
and meta-data. Otherwise, the status message or an error message will be shown as an
intermediate response telling the user what is going on.

A.2.3 Conclusion

We proposed an interactive service framework of image retrieval for a researcher to
easily visualize his or her retrieval results, test systems with real-world query data, and
to present algorithms in operation at the conference. The system mainly provides a
service for off-Internet live demos; it has high portability and can be served anywhere.
The system can also easily access the Internet resources where such an environment
exists.

We implemented s client interface based on the HTML5 standard that is supported by
recent devices like PCs, iPhones, iPads, and Android devices and is familiar to any
audience.

Our system is currently good for audiences sending queries and receiving results. How-
ever, if the traffic generated by the audience is high, or higher frame rates or low latency
is needed, our system should be integrated with WebSockets to create a connection
between each client and the server; this is our future work.

We encourage readers to follow-up on our website1 for the official release of our PVSS
project.

1http://www.satoh-lab.nii.ac.jp/˜stylix

138

http://www.satoh-lab.nii.ac.jp/~stylix

Bibliography

[1] Instagram. Instagram developper documentation. URL https://www.instagram.

com/developer/.

[2] Yahoo. Flickr services. URL https://www.flickr.com/services/api/.

[3] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[4] F. W. Lancaster and E. G. Fayen. Information retrieval on-line. 1973.

[5] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, November 1975. ISSN 0001-0782. doi: 10.1145/
361219.361220. URL http://doi.acm.org/10.1145/361219.361220.

[6] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing & Management, 24(5):513 – 523, 1988. ISSN
0306-4573. doi: http://dx.doi.org/10.1016/0306-4573(88)90021-0. URL http:

//www.sciencedirect.com/science/article/pii/0306457388900210.

[7] Stanford Vision Lab, Stanford University, and Princeton University. Imagenet.
URL http://www.image-net.org/.

[8] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38
(11):39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL
http://doi.acm.org/10.1145/219717.219748.

[9] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In ICCV, pages 1470–1477, 2003. URL http://doi.

ieeecomputersociety.org/10.1109/ICCV.2003.1238663.

[10] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene
categories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 524–531 vol. 2, June 2005. doi:
10.1109/CVPR.2005.16. URL https://dx.doi.org/10.1109%2FCVPR.2005.16.

139

https://www.instagram.com/developer/
https://www.instagram.com/developer/
https://www.flickr.com/services/api/
http://doi.acm.org/10.1145/361219.361220
http://www.sciencedirect.com/science/article/pii/0306457388900210
http://www.sciencedirect.com/science/article/pii/0306457388900210
http://www.image-net.org/
http://doi.acm.org/10.1145/219717.219748
http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238663
http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238663
https://dx.doi.org/10.1109%2FCVPR.2005.16

Bibliography

[11] D.G. Lowe. Object recognition from local scale-invariant features. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
volume 2, pages 1150–1157 vol.2, 1999. doi: 10.1109/ICCV.1999.790410. URL
https://dx.doi.org/10.1109%2FICCV.1999.790410.

[12] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In
Proceedings of the 7th European Conference on Computer Vision-Part I, ECCV
’02, pages 128–142, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-43745-2.
URL http://dl.acm.org/citation.cfm?id=645315.649184.

[13] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. International Journal of Computer Vision, pages 63–86, 2004. ISSN
0920-5691. URL http://dx.doi.org/10.1023/B%3AVISI.0000027790.02288.

f2.

[14] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffal-
itzky, T. Kadir, and L. Van Gool. A comparison of affine region detectors. Int. J.
Comput. Vision, 65(1-2):43–72, November 2005. ISSN 0920-5691. doi: 10.1007/
s11263-005-3848-x. URL http://dx.doi.org/10.1007/s11263-005-3848-x.

[15] Jǐŕı Matas Michal Perďoch, Ondřej Chum. Efficient representation of local ge-
ometry for large scale object retrieval. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9–16, June 2009. ISBN
978-1-4244-3994-2. URL http://dx.doi.org/10.1109/CVPRW.2009.5206529.

[16] Jǐŕı Matas Michal Perďoch, Ondřej Chum. Hessian-affine detector with sift de-
scriptor. URL http://cmp.felk.cvut.cz/˜perdom1/hesaff/.

[17] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. 1967. URL https://zbmath.org/?format=complete&q=an:0214.46201.

[18] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New York,
NY, USA, 99th edition, 1975. ISBN 047135645X. URL http://dl.acm.org/

citation.cfm?id=540298.

[19] Thomas Leung and Jitendra Malik. Representing and recognizing the visual
appearance of materials using three-dimensional textons. International Jour-
nal of Computer Vision, 43(1):29–44, 2001. ISSN 0920-5691. doi: 10.1023/A:
1011126920638. URL http://dx.doi.org/10.1023/A%3A1011126920638.

[20] Jianxin Wu, Wei-Chian Tan, and James M. Rehg. Efficient and effective visual
codebook generation using additive kernels. J. Mach. Learn. Res., 12:3097–3118,
November 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=

1953048.2078205.

140

https://dx.doi.org/10.1109%2FICCV.1999.790410
http://dl.acm.org/citation.cfm?id=645315.649184
http://dx.doi.org/10.1023/B%3AVISI.0000027790.02288.f2
http://dx.doi.org/10.1023/B%3AVISI.0000027790.02288.f2
http://dx.doi.org/10.1007/s11263-005-3848-x
http://dx.doi.org/10.1109/CVPRW.2009.5206529
http://cmp.felk.cvut.cz/~perdom1/hesaff/
https://zbmath.org/?format=complete&q=an:0214.46201
http://dl.acm.org/citation.cfm?id=540298
http://dl.acm.org/citation.cfm?id=540298
http://dx.doi.org/10.1023/A%3A1011126920638
http://dl.acm.org/citation.cfm?id=1953048.2078205
http://dl.acm.org/citation.cfm?id=1953048.2078205

Bibliography BIBLIOGRAPHY

[21] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The pla-
nar k-means problem is np-hard. In Sandip Das and Ryuhei Uehara, editors,
WALCOM: Algorithms and Computation, volume 5431 of Lecture Notes in Com-
puter Science, pages 274–285. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
00201-4. doi: 10.1007/978-3-642-00202-1 24. URL http://dx.doi.org/10.1007/

978-3-642-00202-1_24.

[22] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In CVPR, pages
1–8, 2007. URL http://dx.doi.org/10.1109/CVPR.2007.383172.

[23] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. A library for fast,
distributed clustering. URL https://github.com/philbinj/fastcluster.

[24] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP, pages 331–340, 2009. URL
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-222.

[25] Marius Muja. Fast library for approximate nearest neighbors. URL https://

github.com/mariusmuja/flann.

[26] Andrej Mikuĺık, Michal Perdoch, Ondrej Chum, and Jiri Matas. Learning a fine
vocabulary. In ECCV, pages 1–14, 2010. URL http://dx.doi.org/10.1007/

978-3-642-15558-1_1.

[27] Over Paul, Fiscus Jon, Sanders Greg, Joy David, and Michel Martial. Trecvid
2014 – an overview of the goals, tasks, data, evaluation mechanisms, and metrics.
NIST, USA, 2014. URL http://www-nlpir.nist.gov/projects/tvpubs/tv14.

papers/tv14overview.pdf.

[28] Duy-Dinh Le, Vinh-Tiep Nguyen, Cai-Zhi Zhu, Duc M. Nguyen, Thanh Duc Ngo,
Siriwat Kasamwattanarote, Poullot Sebastien, Minh-Triet Tran, Duc A. Duong,
and Shin’ichi Satoh. Nii at trecvid 2014 instance search task. In TREC Video
Retrieval Evaluation: TRECVID, 2014. URL http://www-nlpir.nist.gov/

projects/tvpubs/tv14.papers/nii.pdf.

[29] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, pages 91–110, 2004. ISSN 0920-5691. URL
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

[30] Relja Arandjelovic. Three things everyone should know to improve object retrieval.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), CVPR ’12, pages 2911–2918, Washington, DC, USA, 2012.

141

http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1109/CVPR.2007.383172
https://github.com/philbinj/fastcluster
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
https://github.com/mariusmuja/flann
https://github.com/mariusmuja/flann
http://dx.doi.org/10.1007/978-3-642-15558-1_1
http://dx.doi.org/10.1007/978-3-642-15558-1_1
http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/tv14overview.pdf
http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/tv14overview.pdf
http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/nii.pdf
http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/nii.pdf
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

Bibliography

IEEE Computer Society. ISBN 978-1-4673-1226-4. URL http://dl.acm.org/

citation.cfm?id=2354409.2355123.

[31] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science, pages 355–364,
1990. URL http://dl.acm.org/citation.cfm?id=275537.275712.

[32] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman.
Total recall: Automatic query expansion with a generative feature model for object
retrieval. In ICCV, pages 1–8, 2007. URL http://dx.doi.org/10.1109/ICCV.

2007.4408891.

[33] Karel Lebeda, Ji Matas, and Ondrej Chum. Fixing the locally optimized RANSAC.
In BMVC, pages 1–11, 2012. URL http://dx.doi.org/10.5244/C.26.95.

[34] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Rec., 22(2):207–216, June
1993. ISSN 0163-5808. doi: 10.1145/170036.170072. URL http://doi.acm.org/

10.1145/170036.170072.

[35] Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and Hong Cheng. Mining colossal
frequent patterns by core pattern fusion. In ICDE, pages 706–715, 2007. URL
http://dx.doi.org/10.1109/ICDE.2007.367916.

[36] Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. Lcm ver.1: An
efficient algorithm for enumerating closed patterns in transaction databases. In
Einoshin Suzuki and Setsuo Arikawa, editors, Discovery Science, FIMI, volume
3245 of Lecture Notes in Computer Science, pages 16–31. Springer Berlin Heidel-
berg, 2003. ISBN 978-3-540-23357-2. doi: 10.1007/978-3-540-30214-8 2. URL
http://dx.doi.org/10.1007/978-3-540-30214-8_2.

[37] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Lost in quantization: Improving particular object retrieval in large scale image
databases. In CVPR, pages 1–8, 2008. URL http://dx.doi.org/10.1109/CVPR.

2008.4587635.

[38] Mark J. Huiskes and Michael S. Lew. The mir flickr retrieval evaluation. In
Proceedings of the 1st ACM International Conference on Multimedia Information
Retrieval, MIR ’08, pages 39–43, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-312-9. doi: 10.1145/1460096.1460104. URL http://doi.acm.org/10.

1145/1460096.1460104.

142

http://dl.acm.org/citation.cfm?id=2354409.2355123
http://dl.acm.org/citation.cfm?id=2354409.2355123
http://dl.acm.org/citation.cfm?id=275537.275712
http://dx.doi.org/10.1109/ICCV.2007.4408891
http://dx.doi.org/10.1109/ICCV.2007.4408891
http://dx.doi.org/10.5244/C.26.95
http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
http://dx.doi.org/10.1109/ICDE.2007.367916
http://dx.doi.org/10.1007/978-3-540-30214-8_2
http://dx.doi.org/10.1109/CVPR.2008.4587635
http://dx.doi.org/10.1109/CVPR.2008.4587635
http://doi.acm.org/10.1145/1460096.1460104
http://doi.acm.org/10.1145/1460096.1460104

Bibliography BIBLIOGRAPHY

[39] Ondrej Chum, Andrej Mikulik, Michal Perdoch, and Jiri Matas. Total recall II:
Query expansion revisited. In CVPR, pages 889–896, 2011. URL http://dx.doi.

org/10.1109/CVPR.2011.5995601.

[40] Danfeng Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neigh-
bor: Accurate object retrieval with k-reciprocal nearest neighbors. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 777–
784, June 2011. doi: 10.1109/CVPR.2011.5995373. URL http://dx.doi.org/

10.1109/CVPR.2011.5995373.

[41] Yanzhi Chen, Xi Li, A. Dick, and A. van den Hengel. Boosting object retrieval
with group queries. Signal Processing Letters, IEEE, 19(11):765–768, Nov 2012.
ISSN 1070-9908. doi: 10.1109/LSP.2012.2216875. URL http://dx.doi.org/10.

1109/LSP.2012.2216875.

[42] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny im-
ages: A large data set for nonparametric object and scene recognition. PAMI,
pages 1958–1970, 2008. URL http://doi.ieeecomputersociety.org/10.1109/

TPAMI.2008.128.

[43] Xiao Zhang, Zhiwei Li, Lei Zhang, Wei-Ying Ma, and Heung-Yeung Shum. Effi-
cient indexing for large scale visual search. In ICCV, pages 1103–1110, 2009. URL
http://dx.doi.org/10.1109/ICCV.2009.5459354.

[44] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from
maximally stable extremal regions. In Proceedings of the British Machine Vision
Conference, pages 36.1–36.10. BMVA Press, 2002. ISBN 1-901725-19-7. URL
http://dx.doi.org/10.5244/C.16.36. doi:10.5244/C.16.36.

[45] Edward Rosten and Tom Drummond. Fusing points and lines for high performance
tracking. In Proceedings of the Tenth IEEE International Conference on Computer
Vision - Volume 2, ICCV ’05, pages 1508–1515, Washington, DC, USA, October
2005. IEEE Computer Society. ISBN 0-7695-2334-X-02. doi: 10.1109/ICCV.2005.
104. URL http://dx.doi.org/10.1109/ICCV.2005.104.

[46] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. IEEE Trans. Pattern Analysis and Machine
Intelligence, 32:105–119, 2010. doi: 10.1109/TPAMI.2008.275. URL http://

lanl.arXiv.org/pdf/0810.2434.

[47] Chris Harris and Mike Stephens. A combined corner and edge detector. In In
Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

143

http://dx.doi.org/10.1109/CVPR.2011.5995601
http://dx.doi.org/10.1109/CVPR.2011.5995601
http://dx.doi.org/10.1109/CVPR.2011.5995373
http://dx.doi.org/10.1109/CVPR.2011.5995373
http://dx.doi.org/10.1109/LSP.2012.2216875
http://dx.doi.org/10.1109/LSP.2012.2216875
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.128
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.128
http://dx.doi.org/10.1109/ICCV.2009.5459354
http://dx.doi.org/10.5244/C.16.36
http://dx.doi.org/10.1109/ICCV.2005.104
http://lanl.arXiv.org/pdf/0810.2434
http://lanl.arXiv.org/pdf/0810.2434

Bibliography

[48] Zhiyong Ye, Yijian Pei, and Jihong Shi. An improved algorithm for harris corner
detection. In Image and Signal Processing, 2009. CISP ’09. 2nd International
Congress on, pages 1–4, Oct 2009. doi: 10.1109/CISP.2009.5304635. URL http:

//dx.doi.org/10.1109/CISP.2009.5304635.

[49] Wikipedia. Scale-invariant feature transform. URL https://en.wikipedia.org/

wiki/Scale-invariant_feature_transform.

[50] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In In CVPR, pages 886–893, 2005. URL http://citeseer.ist.psu.edu/

viewdoc/summary?doi=10.1.1.101.8745.

[51] Siriwat Kasamwattanarote, Nagul Cooharojananone, Shin’ichi Satoh, and Ra-
jalida Lipikorn. Real time tunnel based video summarization using direct shift
collision detection. In Guoping Qiu, KinMan Lam, Hitoshi Kiya, Xiang-Yang
Xue, C.-C.Jay Kuo, and MichaelS. Lew, editors, Advances in Multimedia In-
formation Processing - PCM 2010, volume 6297 of Lecture Notes in Computer
Science, pages 136–147. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
15701-1. doi: 10.1007/978-3-642-15702-8 13. URL http://dx.doi.org/10.1007/

978-3-642-15702-8_13.

[52] N. Cooharojananone, Siriwat Kasamwattanarote, S. Satoh, and R. Lipikorn. Real
time trajectory search in video summarization using direct distance transform.
In Signal Processing (ICSP), 2010 IEEE 10th International Conference on, pages
932–935, Oct 2010. doi: 10.1109/ICOSP.2010.5655723. URL http://dx.doi.

org/10.1109/ICOSP.2010.5655723.

[53] Nagul Cooharojananone, Siriwat Kasamwattanarote, Rajalida Lipikorn, and
Shin’ichi Satoh. Automated real-time video surveillance summarization frame-
work. Journal of Real-Time Image Processing, 10(3):513–532, 2015. ISSN 1861-
8200. doi: 10.1007/s11554-012-0280-7. URL http://dx.doi.org/10.1007/

s11554-012-0280-7.

[54] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.
ISSN 1077-3142. doi: 10.1016/j.cviu.2007.09.014. URL http://dx.doi.org/10.

1016/j.cviu.2007.09.014.

[55] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Proceedings of the 11th Euro-
pean Conference on Computer Vision: Part IV, ECCV’10, pages 778–792, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15560-X, 978-3-642-15560-4. URL
http://dl.acm.org/citation.cfm?id=1888089.1888148.

144

http://dx.doi.org/10.1109/CISP.2009.5304635
http://dx.doi.org/10.1109/CISP.2009.5304635
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8745
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8745
http://dx.doi.org/10.1007/978-3-642-15702-8_13
http://dx.doi.org/10.1007/978-3-642-15702-8_13
http://dx.doi.org/10.1109/ICOSP.2010.5655723
http://dx.doi.org/10.1109/ICOSP.2010.5655723
http://dx.doi.org/10.1007/s11554-012-0280-7
http://dx.doi.org/10.1007/s11554-012-0280-7
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dl.acm.org/citation.cfm?id=1888089.1888148

Bibliography BIBLIOGRAPHY

[56] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Brisk: Binary ro-
bust invariant scalable keypoints. In Proceedings of the 2011 International Con-
ference on Computer Vision, ICCV ’11, pages 2548–2555, Washington, DC, USA,
2011. IEEE Computer Society. ISBN 978-1-4577-1101-5. doi: 10.1109/ICCV.2011.
6126542. URL http://dx.doi.org/10.1109/ICCV.2011.6126542.

[57] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: an
efficient alternative to SIFT or SURF. In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pages 2564–2571, Washington, DC,
USA, 2011. IEEE Computer Society. ISBN 978-1-4577-1101-5. doi: 10.1109/ICCV.
2011.6126544. URL http://dx.doi.org/10.1109/ICCV.2011.6126544.

[58] OpenCV. Opencv: Open sourse computer vision. URL http://opencv.org.

[59] Jean-Michel Morel and Guoshen Yu. Asift: A new framework for fully affine invari-
ant image comparison. SIAM J. Img. Sci., 2(2):438–469, April 2009. ISSN 1936-
4954. doi: 10.1137/080732730. URL http://dx.doi.org/10.1137/080732730.

[60] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable library
of computer vision algorithms. In Proceedings of the 18th ACM International
Conference on Multimedia, MM ’10, pages 1469–1472, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-933-6. doi: 10.1145/1873951.1874249. URL
http://doi.acm.org/10.1145/1873951.1874249.

[61] VLFeat. Vlfeat: an open source computer vision algorithms. URL http://www.

vlfeat.org/.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011. URL http://www.jmlr.org/papers/volume12/pedregosa11a/

pedregosa11a.pdf.

[63] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122, 2013.

[64] Danfeng Qin, C. Wengert, and L. Van Gool. Query adaptive similarity for large
scale object retrieval. In Computer Vision and Pattern Recognition (CVPR), 2013

145

http://dx.doi.org/10.1109/ICCV.2011.6126542
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://opencv.org
http://dx.doi.org/10.1137/080732730
http://doi.acm.org/10.1145/1873951.1874249
http://www.vlfeat.org/
http://www.vlfeat.org/
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

Bibliography

IEEE Conference on, pages 1610–1617, June 2013. doi: 10.1109/CVPR.2013.211.
URL http://dx.doi.org/10.1109/CVPR.2013.211.

[65] Panu Turcot and David G. Lowe. Better matching with fewer features: The
selection of useful features in large database recognition problems. In ICCV, pages
2109–2116, 2009. ISBN 978-1-4244-4442-7. URL http://dx.doi.org/10.1109/

ICCVW.2009.5457541.

[66] Pedro Henrique Bugatti, Marcela Xavier Ribeiro, Agma Juci Machado Traina,
and Caetano Traina Jr. Content-based retrieval of medical images by continuous
feature selection. In Computer-Based Medical Systems, CBMS, pages 272–277,
2008. URL http://dx.doi.org/10.1109/CBMS.2008.82.

[67] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. In ICCV, pages 1458–1465, 2005. URL
http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.239.

[68] Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What does classifying more
than 10,000 image categories tell us? In ECCV, pages 71–84, 2010. ISBN 3-
642-15554-5, 978-3-642-15554-3. URL http://dl.acm.org/citation.cfm?id=

1888150.1888157.

[69] Christian Wallraven, Barbara Caputo, and Arnulf B. A. Graf. Recognition with
local features: the kernel recipe. In ICCV, pages 257–264, 2003. URL http:

//doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238351.

[70] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree.
In CVPR, pages 2161–2168, 2006. ISBN 0-7695-2597-0. URL http://dx.doi.

org/10.1109/CVPR.2006.264.

[71] Vijay R. Chandrasekhar, David M. Chen, Sam S. Tsai, Ngai-Man Cheung,
Huizhong Chen, Gabriel Takacs, Yuriy Reznik, Ramakrishna Vedantham, Radek
Grzeszczuk, Jeff Bach, and Bernd Girod. The stanford mobile visual search data
set. In Proceedings of the Second Annual ACM Conference on Multimedia Sys-
tems, MMSys ’11, pages 117–122, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0518-1. doi: 10.1145/1943552.1943568. URL http://doi.acm.org/10.

1145/1943552.1943568.

[72] NIST. Trec video retrieval evaluation: Trecvid. URL http://trecvid.nist.

gov/.

[73] Cai-Zhi Zhu and Shin’ichi Satoh. Large vocabulary quantization for searching
instances from videos. In ICMR, pages 1–8, 2012. ISBN 978-1-4503-1329-2. URL
http://doi.acm.org/10.1145/2324796.2324856.

146

http://dx.doi.org/10.1109/CVPR.2013.211
http://dx.doi.org/10.1109/ICCVW.2009.5457541
http://dx.doi.org/10.1109/ICCVW.2009.5457541
http://dx.doi.org/10.1109/CBMS.2008.82
http://doi.ieeecomputersociety.org/10.1109/ICCV.2005.239
http://dl.acm.org/citation.cfm?id=1888150.1888157
http://dl.acm.org/citation.cfm?id=1888150.1888157
http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238351
http://doi.ieeecomputersociety.org/10.1109/ICCV.2003.1238351
http://dx.doi.org/10.1109/CVPR.2006.264
http://dx.doi.org/10.1109/CVPR.2006.264
http://doi.acm.org/10.1145/1943552.1943568
http://doi.acm.org/10.1145/1943552.1943568
http://trecvid.nist.gov/
http://trecvid.nist.gov/
http://doi.acm.org/10.1145/2324796.2324856

Bibliography BIBLIOGRAPHY

[74] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-features for
large scale image search. Int. J. Comput. Vision, 87(3):316–336, May 2010. ISSN
0920-5691. doi: 10.1007/s11263-009-0285-2. URL http://dx.doi.org/10.1007/

s11263-009-0285-2.

[75] Ameesh Makadia. Feature tracking for wide-baseline image retrieval. In Kostas
Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision –
ECCV 2010, volume 6315 of Lecture Notes in Computer Science, pages 310–
323. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-15554-3. doi: 10.1007/
978-3-642-15555-0 23. URL http://dx.doi.org/10.1007/978-3-642-15555-0_

23.

[76] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual
elements. In CVPR, pages 1169–1176, 2009. URL http://dx.doi.org/10.1109/

CVPRW.2009.5206609.

[77] Cai-Zhi Zhu, Siriwat Kasamwattanarote, Xiaomeng Wu, and Shin’ichi Satoh. Con-
nect commercial films with realities. In ICMR, pages 323–324, 2013. ISBN 978-1-
4503-2033-7. URL http://doi.acm.org/10.1145/2461466.2461527.

[78] Cai-Zhi Zhu, Siriwat Kasamwattanarote, Xiaomeng Wu, and Shin’ichi Satoh. Tell
me about tv commercials of this product. In MMM, pages 242–253, 2014. URL
http://dx.doi.org/10.1007/978-3-319-04114-8_21.

[79] X. Wu and S. Satoh. Ultrahigh-speed tv commercial detection, extraction, and
matching. Circuits and Systems for Video Technology, IEEE Transactions on, 23
(6):1054–1069, June 2013. ISSN 1051-8215. doi: 10.1109/TCSVT.2013.2248991.
URL http://dx.doi.org/10.1109/TCSVT.2013.2248991.

[80] Henrik Stewénius, SteinarH. Gunderson, and Julien Pilet. Size matters: Exhaus-
tive geometric verification for image retrieval accepted for eccv 2012. In Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid,
editors, Computer Vision – ECCV 2012, volume 7573 of Lecture Notes in Com-
puter Science, pages 674–687. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
33708-6. doi: 10.1007/978-3-642-33709-3 48. URL http://dx.doi.org/10.1007/

978-3-642-33709-3_48.

[81] Apache Hadoop. Apache hadoop, an open-source software framework distributed
storage and distributed processing. URL https://hadoop.apache.org/.

[82] Siriwat Kasamwattanarote, Yusuke Uchida, and Shin’ichi Satoh. Query boot-
strapping: A visual mining based query expansion. In IEICE Transactions on

147

http://dx.doi.org/10.1007/s11263-009-0285-2
http://dx.doi.org/10.1007/s11263-009-0285-2
http://dx.doi.org/10.1007/978-3-642-15555-0_23
http://dx.doi.org/10.1007/978-3-642-15555-0_23
http://dx.doi.org/10.1109/CVPRW.2009.5206609
http://dx.doi.org/10.1109/CVPRW.2009.5206609
http://doi.acm.org/10.1145/2461466.2461527
http://dx.doi.org/10.1007/978-3-319-04114-8_21
http://dx.doi.org/10.1109/TCSVT.2013.2248991
http://dx.doi.org/10.1007/978-3-642-33709-3_48
http://dx.doi.org/10.1007/978-3-642-33709-3_48
https://hadoop.apache.org/

Bibliography

Information and Systems, volume Vol.E99-D, pages 454–466, February 2016. URL
http://www.satoh-lab.nii.ac.jp/˜stylix/.

[83] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007. ISBN 9780136006633. URL http:

//dl.acm.org/citation.cfm?id=1410217.

[84] Douglas W. Jones. Page replacement, 22c:116, lecture notes. URL http:

//homepage.cs.uiowa.edu/˜jones/opsys/fall95/notes/0908.html.

[85] Paul Torrez, Tim Hallner, Kiran Mathrani, and Anu Bhaskar. Virtual memory, lec-
ture notes. URL http://www.read.cs.ucla.edu/111/2006fall/notes/lec11.

[86] Siriwat Kasamwattanarote and Shin’ichi Satoh. Pvss: Portable visual search ser-
vice for researchers. In Proceedings of the 7th International Conference on Internet
Multimedia Computing and Service, ICIMCS ’15, pages 64:1–64:5, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3528-7. doi: 10.1145/2808492.2808556. URL
http://doi.acm.org/10.1145/2808492.2808556.

[87] Bernd Girod, Vijay Chandrasekhar, David M. Chen, Ngai-Man Cheung, Radek
Grzeszczuk, Yuriy A. Reznik, Gabriel Takacs, Sam S. Tsai, and Ramakrishna
Vedantham. Mobile visual search. In ACMMM, pages 117–122, 2011. ISBN 978-
1-4503-0518-1. URL http://doi.acm.org/10.1145/1943552.1943568.

[88] Vijay Chandrasekhar, David M. Chen, Andy Lin, Gabriel Takacs, Sam S. Tsai,
Ngai-Man Cheung, Yuriy A. Reznik, Radek Grzeszczuk, and Bernd Girod. Com-
parison of local feature descriptors for mobile visual search. In ICIP, pages 3885–
3888, 2010. URL http://dx.doi.org/10.1109/ICIP.2010.5649937.

[89] D.M. Chen and B. Girod. Memory-efficient image databases for mobile visual
search. MultiMedia, IEEE, 21(1):14–23, Jan 2014. ISSN 1070-986X. doi: 10.1109/
MMUL.2013.46. URL http://dx.doi.org/10.1109/MMUL.2013.46.

[90] Vijay Chandrasekhar, Gabriel Takacs, David M. Chen, Sam S. Tsai, Yuriy Reznik,
Radek Grzeszczuk, and Bernd Girod. Compressed histogram of gradients: A low-
bitrate descriptor. International Journal of Computer Vision, pages 384–399, 2012.
ISSN 0920-5691. URL http://dx.doi.org/10.1007/s11263-011-0453-z.

[91] Rongrong Ji, Ling-Yu Duan, Jie Chen, Hongxun Yao, Yong Rui, Shih-Fu Chang,
and Wen Gao. Towards low bit rate mobile visual search with multiple-channel
coding. In ACMMM, pages 573–582, 2011. ISBN 978-1-4503-0616-4. URL http:

//doi.acm.org/10.1145/2072298.2072372.

148

http://www.satoh-lab.nii.ac.jp/~stylix/
http://dl.acm.org/citation.cfm?id=1410217
http://dl.acm.org/citation.cfm?id=1410217
http://homepage.cs.uiowa.edu/~jones/opsys/fall95/notes/0908.html
http://homepage.cs.uiowa.edu/~jones/opsys/fall95/notes/0908.html
http://www.read.cs.ucla.edu/111/2006fall/notes/lec11
http://doi.acm.org/10.1145/2808492.2808556
http://doi.acm.org/10.1145/1943552.1943568
http://dx.doi.org/10.1109/ICIP.2010.5649937
http://dx.doi.org/10.1109/MMUL.2013.46
http://dx.doi.org/10.1007/s11263-011-0453-z
http://doi.acm.org/10.1145/2072298.2072372
http://doi.acm.org/10.1145/2072298.2072372

Bibliography BIBLIOGRAPHY

[92] Yu-Chuan Su, Tzu-Hsuan Chiu, Yan-Ying Chen, Chun-Yen Yeh, and Winston H.
Hsu. Enabling low bitrate mobile visual recognition: A performance versus band-
width evaluation. In ACMMM, pages 73–82, 2013. ISBN 978-1-4503-2404-5. URL
http://doi.acm.org/10.1145/2502081.2502110.

[93] Jayaguru Panda, Michael S. Brown, and C. V. Jawahar. Offline mobile instance
retrieval with a small memory footprint. In ICCV, pages 1257–1264, 2013. URL
http://dx.doi.org/10.1109/ICCV.2013.159.

[94] Lican Dai, Huanjing Yue, Xiaoyan Sun, and Feng Wu. Imshare: Instantly sharing
your mobile landmark images by search-based reconstruction. In ACMMM, pages
579–588, 2012. ISBN 978-1-4503-1089-5. URL http://doi.acm.org/10.1145/

2393347.2393428.

[95] Junfeng He, Jinyuan Feng, Xianglong Liu, Tao Cheng, Tai-Hsu Lin, Hyunjin
Chung, and Shih-Fu Chang. Mobile product search with bag of hash bits and
boundary reranking. In CVPR, pages 3005–3012, 2012. URL http://dx.doi.

org/10.1109/CVPR.2012.6248030.

[96] CloudSight. Camfind app - visual search & image recognition api powered by
cloudsight. URL http://camfindapp.com.

[97] KDDI R&D Laboratories. Satch viewer - スマートフォン用新感覚arコミュニケ
ーションツール. URL http://viewer.satch.jp.

[98] Florent Perronnin, Yan Liu, Jorge Sánchez, and Herve Poirier. Large-scale image
retrieval with compressed fisher vectors. In CVPR, pages 3384–3391, 2010. URL
http://dx.doi.org/10.1109/CVPR.2010.5540009.

[99] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors into
a compact image representation. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3304–3311, June 2010. doi: 10.1109/
CVPR.2010.5540039. URL http://dx.doi.org/10.1109/CVPR.2010.5540039.

[100] Hervé Jégou, Florent Perronnin, Matthijs Douze, Jorge Sánchez, Patrick
Perez, and Cordelia Schmid. Aggregating local image descriptors into compact
codes. PAMI, pages 1704–1716, 2012. ISSN 0162-8828. URL http://dx.doi.

org/10.1109/TPAMI.2011.235.

[101] Jorge Sánchez and Florent Perronnin. High-dimensional signature compression
for large-scale image classification. In CVPR, pages 1665–1672, 2011. URL http:

//dx.doi.org/10.1109/CVPR.2011.5995504.

149

http://doi.acm.org/10.1145/2502081.2502110
http://dx.doi.org/10.1109/ICCV.2013.159
http://doi.acm.org/10.1145/2393347.2393428
http://doi.acm.org/10.1145/2393347.2393428
http://dx.doi.org/10.1109/CVPR.2012.6248030
http://dx.doi.org/10.1109/CVPR.2012.6248030
http://camfindapp.com
http://viewer.satch.jp
http://dx.doi.org/10.1109/CVPR.2010.5540009
http://dx.doi.org/10.1109/CVPR.2010.5540039
http://dx.doi.org/10.1109/TPAMI.2011.235
http://dx.doi.org/10.1109/TPAMI.2011.235
http://dx.doi.org/10.1109/CVPR.2011.5995504
http://dx.doi.org/10.1109/CVPR.2011.5995504

Bibliography

[102] David Chen, Sam Tsai, Vijay Chandrasekhar, Gabriel Takacs, Ramakrishna
Vedantham, Radek Grzeszczuk, and Bernd Girod. Residual enhanced visual vec-
tor as a compact signature for mobile visual search. Signal Process., 93(8):2316–
2327, August 2013. ISSN 0165-1684. doi: 10.1016/j.sigpro.2012.06.005. URL
http://dx.doi.org/10.1016/j.sigpro.2012.06.005.

[103] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding
and weak geometric consistency for large scale image search. In ECCV, pages
304–317, 2008. ISBN 978-3-540-88681-5. URL http://dx.doi.org/10.1007/

978-3-540-88682-2_24.

[104] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33
(1):117–128, Jan 2011. ISSN 0162-8828. doi: 10.1109/TPAMI.2010.57. URL
http://dx.doi.org/10.1109/TPAMI.2010.57.

[105] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Packing bag-of-features. In
ICCV, pages 2357–2364, 2009. URL http://dx.doi.org/10.1109/ICCV.2009.

5459419.

[106] Stefan Romberg, Moritz August, Christian X. Ries, and Rainer Lienhart. Robust
feature bundling. In PCM, pages 45–56, 2012. URL http://dx.doi.org/10.

1007/978-3-642-34778-8_5.

[107] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash
and tf-idf weighting. In BMVC, pages 1–10, 2008. URL http://dx.doi.org/10.

5244/C.22.50.

[108] Ondrej Chum, Michal Perdoch, and Jiri Matas. Geometric min-hashing: Finding
a (thick) needle in a haystack. In CVPR, pages 17–24, 2009. URL http://dx.

doi.org/10.1109/CVPRW.2009.5206531.

[109] Ondrej Chum and Jiri Matas. Unsupervised discovery of co-occurrence in sparse
high dimensional data. In CVPR, pages 3416–3423, 2010. URL http://dx.doi.

org/10.1109/CVPR.2010.5539997.

[110] A. Broder. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pages
21–, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8132-2.
URL http://dl.acm.org/citation.cfm?id=829502.830043.

[111] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Sequential projection learning
for hashing with compact codes. In ICML, pages 1127–1134, 2010. URL http:

//www.icml2010.org/papers/178.pdf.

150

http://dx.doi.org/10.1016/j.sigpro.2012.06.005
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1109/TPAMI.2010.57
http://dx.doi.org/10.1109/ICCV.2009.5459419
http://dx.doi.org/10.1109/ICCV.2009.5459419
http://dx.doi.org/10.1007/978-3-642-34778-8_5
http://dx.doi.org/10.1007/978-3-642-34778-8_5
http://dx.doi.org/10.5244/C.22.50
http://dx.doi.org/10.5244/C.22.50
http://dx.doi.org/10.1109/CVPRW.2009.5206531
http://dx.doi.org/10.1109/CVPRW.2009.5206531
http://dx.doi.org/10.1109/CVPR.2010.5539997
http://dx.doi.org/10.1109/CVPR.2010.5539997
http://dl.acm.org/citation.cfm?id=829502.830043
http://www.icml2010.org/papers/178.pdf
http://www.icml2010.org/papers/178.pdf

Bibliography BIBLIOGRAPHY

[112] Zhong Wu, Qifa Ke, M. Isard, and Jian Sun. Bundling features for large scale
partial-duplicate web image search. In CVPR, pages 25–32, 2009. URL http:

//dx.doi.org/10.1109/CVPRW.2009.5206566.

[113] Xiaoyu Wang, Ming Yang, T. Cour, Shenghuo Zhu, Kai Yu, and T.X. Han.
Contextual weighting for vocabulary tree based image retrieval. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 209–216, Nov
2011. doi: 10.1109/ICCV.2011.6126244. URL http://dx.doi.org/10.1109/

ICCV.2011.6126244.

[114] Shiliang Zhang, Qingming Huang, Gang Hua, Shuqiang Jiang, Wen Gao, and
Qi Tian. Building contextual visual vocabulary for large-scale image applications.
In Proceedings of the 18th ACM International Conference on Multimedia, MM
’10, pages 501–510, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-933-6.
doi: 10.1145/1873951.1874018. URL http://doi.acm.org/10.1145/1873951.

1874018.

[115] David C. Lee, Qifa Ke, and Michael Isard. Partition min-hash for partial duplicate
image discovery. In Proceedings of the 11th European Conference on Computer Vi-
sion: Part I, ECCV’10, pages 648–662, Berlin, Heidelberg, 2010. Springer-Verlag.
ISBN 3-642-15548-0, 978-3-642-15548-2. URL http://dl.acm.org/citation.

cfm?id=1886063.1886113.

[116] Bangpeng Yao and Fei-Fei Li. Grouplet: A structured image representation for
recognizing human and object interactions. In CVPR, pages 9–16, 2010. URL
http://dx.doi.org/10.1109/CVPR.2010.5540234.

[117] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. Locality-constrained linear coding for image classification. In CVPR, pages
3360–3367, 2010. URL http://dx.doi.org/10.1109/CVPR.2010.5540018.

[118] Yang Cao, Changhu Wang, Zhiwei Li, Liqing Zhang, and Lei Zhang. Spatial-
bag-of-features. In CVPR, pages 3352–3359, 2010. URL http://dx.doi.org/10.

1109/CVPR.2010.5540021.

[119] Wengang Zhou, Yijuan Lu, Houqiang Li, Yibing Song, and Qi Tian. Spatial coding
for large scale partial-duplicate web image search. In ACMMM, pages 511–520,
2010. ISBN 978-1-60558-933-6. URL http://doi.acm.org/10.1145/1873951.

1874019.

[120] Yimeng Zhang, Zhaoyin Jia, and Tsuhan Chen. Image retrieval with geometry-
preserving visual phrases. In CVPR, pages 809–816, 2011. URL http://dx.doi.

org/10.1109/CVPR.2011.5995528.

151

http://dx.doi.org/10.1109/CVPRW.2009.5206566
http://dx.doi.org/10.1109/CVPRW.2009.5206566
http://dx.doi.org/10.1109/ICCV.2011.6126244
http://dx.doi.org/10.1109/ICCV.2011.6126244
http://doi.acm.org/10.1145/1873951.1874018
http://doi.acm.org/10.1145/1873951.1874018
http://dl.acm.org/citation.cfm?id=1886063.1886113
http://dl.acm.org/citation.cfm?id=1886063.1886113
http://dx.doi.org/10.1109/CVPR.2010.5540234
http://dx.doi.org/10.1109/CVPR.2010.5540018
http://dx.doi.org/10.1109/CVPR.2010.5540021
http://dx.doi.org/10.1109/CVPR.2010.5540021
http://doi.acm.org/10.1145/1873951.1874019
http://doi.acm.org/10.1145/1873951.1874019
http://dx.doi.org/10.1109/CVPR.2011.5995528
http://dx.doi.org/10.1109/CVPR.2011.5995528

Bibliography

[121] Junsong Yuan, Ying Wu, and Ming Yang. Discovery of collocation patterns: from
visual words to visual phrases. In CVPR, pages 1–8, 2007. URL http://dx.doi.

org/10.1109/CVPR.2007.383222.

[122] Cai-Zhi Zhu, Hervé Jégou, and Shin’Ichi Satoh. Query-adaptive asymmetrical
dissimilarities for visual object retrieval. In ICCV - International Conference on
Computer Vision, pages 1705–1712, 2013. URL http://dx.doi.org/10.1109/

ICCV.2013.214.

[123] Nadav Ben-Haim, Boris Babenko, and Serge Belongie. Improving web-based image
search via content based clustering. pages 106–106, Washington, DC, USA, 2006.
ISBN 0-7695-2646-2. URL http://dx.doi.org/10.1109/CVPRW.2006.100.

[124] Josip Krapac, Moray Allan, Jakob J. Verbeek, and Frederic Jurie. Improving web
image search results using query-relative classifiers. In CVPR, pages 1094–1101,
2010. URL http://dx.doi.org/10.1109/CVPR.2010.5540092.

[125] Relja Arandjelovic and Andrew Zisserman. Multiple queries for large scale specific
object retrieval. In BMVC, pages 1–11, 2012. URL http://dx.doi.org/10.5244/

C.26.92.

[126] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In VLDB, pages 487–499, 1994. ISBN 1-55860-153-8.
URL http://dl.acm.org/citation.cfm?id=645920.672836.

[127] Chan Man Kuok, Ada Fu, and Man Hon Wong. Mining fuzzy association rules
in databases. SIGMOD Rec., 27(1):41–46, March 1998. ISSN 0163-5808. doi:
10.1145/273244.273257. URL http://doi.acm.org/10.1145/273244.273257.

[128] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12, May 2000. ISSN 0163-5808. doi: 10.1145/
335191.335372. URL http://doi.acm.org/10.1145/335191.335372.

[129] Christian Borgelt. An implementation of the fp-growth algorithm. In OSDM, pages
1–5, 2005. ISBN 1-59593-210-0. URL http://doi.acm.org/10.1145/1133905.

1133907.

[130] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(6):437–456, 2012. ISSN 1942-4795. doi:
10.1002/widm.1074. URL http://dx.doi.org/10.1002/widm.1074.

[131] Takeaki Uno, Yuzo Uchida, and Hiroki Arimura. Lcm ver.2: An efficient algorithm
for enumerating closed patterns in transaction databases. In Discovery Science,

152

http://dx.doi.org/10.1109/CVPR.2007.383222
http://dx.doi.org/10.1109/CVPR.2007.383222
http://dx.doi.org/10.1109/ICCV.2013.214
http://dx.doi.org/10.1109/ICCV.2013.214
http://dx.doi.org/10.1109/CVPRW.2006.100
http://dx.doi.org/10.1109/CVPR.2010.5540092
http://dx.doi.org/10.5244/C.26.92
http://dx.doi.org/10.5244/C.26.92
http://dl.acm.org/citation.cfm?id=645920.672836
http://doi.acm.org/10.1145/273244.273257
http://doi.acm.org/10.1145/335191.335372
http://doi.acm.org/10.1145/1133905.1133907
http://doi.acm.org/10.1145/1133905.1133907
http://dx.doi.org/10.1002/widm.1074

Bibliography BIBLIOGRAPHY

FIMI, Lecture Notes in Computer Science. 2004. URL http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.495.4958&rep=rep1&type=pdf.

[132] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver.3: Collaboration
of array, bitmap and prefix tree for frequent itemset mining. In Proceedings of
the 1st International Workshop on Open Source Data Mining: Frequent Pattern
Mining Implementations, OSDM ’05, pages 77–86, New York, NY, USA, 2005.
ACM. ISBN 1-59593-210-0. doi: 10.1145/1133905.1133916. URL http://doi.

acm.org/10.1145/1133905.1133916.

[133] Philip S. Yu, Xifeng Yan, Jiawei Han, Hong Cheng, and Feida Zhu. Approxi-
mate frequent pattern mining. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.113.7415.

[134] Jilles Vreeken, Matthijs Leeuwen, and Arno Siebes. Krimp: Mining itemsets that
compress. Data Min. Knowl. Discov., pages 169–214, 2011. URL http://dx.doi.

org/10.1007/s10618-010-0202-x.

[135] Peter D. Grunwald. The Minimum Description Length Principle (Adaptive Com-
putation and Machine Learning). The MIT Press, 2007.

[136] Yeong-Chyi Lee, Tzung-Pei Hong, and Wen-Yang Lin. Mining association rules
with multiple minimum supports using maximum constraints. In IJAR, pages 44–
54, 2005. doi: http://dx.doi.org/10.1016/j.ijar.2004.11.006. URL http://www.

sciencedirect.com/science/article/pii/S0888613X04001392.

[137] Christian Borgelt. Frequent pattern mining lecture. URL http://www.borgelt.

net/teach/fpm.

[138] T. Quack, V. Ferrari, B. Leibe, and L. Van Gool. Efficient mining of frequent
and distinctive feature configurations. In ICCV, pages 1–8, 2007. URL http:

//dx.doi.org/10.1109/ICCV.2007.4408906.

[139] Sebastian Nowozin, Koji Tsuda, Takeaki Uno, Taku Kudo, and Gokhan H. Bakir.
Weighted substructure mining for image analysis. In CVPR, pages 1–8, 2007. URL
http://dx.doi.org/10.1109/CVPR.2007.383171.

[140] Andrew Gilbert, John Illingworth, and Richard Bowden. Fast realistic multi-action
recognition using mined dense spatio-temporal features. In ICCV, pages 925–931,
2009. URL http://dx.doi.org/10.1109/ICCV.2009.5459335.

[141] Basura Fernando, Elisa Fromont, and Tinne Tuytelaars. Effective use of frequent
itemset mining for image classification. In ECCV, pages 214–227, 2012. ISBN
978-3-642-33717-8. URL http://dx.doi.org/10.1007/978-3-642-33718-5_16.

153

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.4958&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.4958&rep=rep1&type=pdf
http://doi.acm.org/10.1145/1133905.1133916
http://doi.acm.org/10.1145/1133905.1133916
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7415
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7415
http://dx.doi.org/10.1007/s10618-010-0202-x
http://dx.doi.org/10.1007/s10618-010-0202-x
http://www.sciencedirect.com/science/article/pii/S0888613X04001392
http://www.sciencedirect.com/science/article/pii/S0888613X04001392
http://www.borgelt.net/teach/fpm
http://www.borgelt.net/teach/fpm
http://dx.doi.org/10.1109/ICCV.2007.4408906
http://dx.doi.org/10.1109/ICCV.2007.4408906
http://dx.doi.org/10.1109/CVPR.2007.383171
http://dx.doi.org/10.1109/ICCV.2009.5459335
http://dx.doi.org/10.1007/978-3-642-33718-5_16

Bibliography

[142] Till Quack, Vittorio Ferrari, and Luc J. Van Gool. Video mining with frequent
itemset configurations. In FIMI, pages 360–369, 2006. URL http://dx.doi.org/

10.1007/11788034_37.

[143] Basura Fernando and Tinne Tuytelaars. Mining multiple queries for image re-
trieval: On-the-fly learning of an object-specific mid-level representation. In ICCV,
pages 2544–2551, 2013. URL http://dx.doi.org/10.1109/ICCV.2013.316.

[144] Winn Voravuthikunchai, Bruno Crémilleux, and Frédéric Jurie. Image re-ranking
based on statistics of frequent patterns. In ICMR, pages 129–136, 2014. ISBN
978-1-4503-2782-4. URL http://doi.acm.org/10.1145/2578726.2578743.

[145] Li Fei-Fei. Local descriptors, sift and single object recognition. URL
http://vision.stanford.edu/teaching/cs231a_autumn1112/lecture/

lecture12_SIFT_single_obj_recog_cs231a_marked.pdf.

[146] O. Ore. Galois connections. 1944.

[147] Baptiste Jeudy and François Rioult. Knowledge Discovery in Inductive Databases:
Third International Workshop, KDID 2004, Pisa, Italy, September 20, 2004, Re-
vised Selected and Invited Papers, chapter Database Transposition for Constrained
(Closed) Pattern Mining, pages 89–107. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2005. ISBN 978-3-540-31841-5. doi: 10.1007/978-3-540-31841-5 6. URL
http://dx.doi.org/10.1007/978-3-540-31841-5_6.

[148] S. Joshi and R.C. Jain. A dynamic approach for frequent pattern mining us-
ing transposition of database. In Communication Software and Networks, 2010.
ICCSN ’10. Second International Conference on, pages 498–501, Feb 2010. doi:
10.1109/ICCSN.2010.15. URL http://dx.doi.org/10.1109/ICCSN.2010.15.

[149] François Rioult, Jean-François Boulicaut, Bruno Crémilleux, and Jérémy Besson.
Using transposition for pattern discovery from microarray data. In DMKD, pages
73–79, 2003. URL http://doi.acm.org/10.1145/882082.882099.

[150] François Rioult. Mining strong emerging patterns in wide sage data. In ECML/P-
KDD Discovery Challenge Workshop, pages 484–487, 2004.

[151] Florent Domenach and Masato Koda. Mining association rules using lattice theory
(6th workshop on stochastic numerics). pages 122–133, 2004. URL http://www.

kurims.kyoto-u.ac.jp/˜kyodo/kokyuroku/contents/pdf/1351-11.pdf.

[152] Laboratoire LARIM. Lattice miner. URL http://sourceforge.net/projects/

lattice-miner/.

154

http://dx.doi.org/10.1007/11788034_37
http://dx.doi.org/10.1007/11788034_37
http://dx.doi.org/10.1109/ICCV.2013.316
http://doi.acm.org/10.1145/2578726.2578743
http://vision.stanford.edu/teaching/cs231a_autumn1112/lecture/lecture12_SIFT_single_obj_recog_cs231a_marked.pdf
http://vision.stanford.edu/teaching/cs231a_autumn1112/lecture/lecture12_SIFT_single_obj_recog_cs231a_marked.pdf
http://dx.doi.org/10.1007/978-3-540-31841-5_6
http://dx.doi.org/10.1109/ICCSN.2010.15
http://doi.acm.org/10.1145/882082.882099
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1351-11.pdf
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1351-11.pdf
http://sourceforge.net/projects/lattice-miner/
http://sourceforge.net/projects/lattice-miner/

Index BIBLIOGRAPHY

[153] VMware. Vmware virtualization for desktop & server, application, public & hybrid
clouds. URL http://www.vmware.com/.

[154] Orable. Oracle vm virtualbox. URL https://www.virtualbox.org/.

155

http://www.vmware.com/
https://www.virtualbox.org/

Index

fi, 19
tf-fi-idf , 19
tf-idf , 9, 12, 19, 51

ADINT, 65
AKM, 8, 12, 83
ANN, 8, 12, 83
Approximate k-means, 8, 12
Approximate nearest neighbor, 12
Approximate Nearest Neighbors, 8
ASUP, 49
Average precision, 82

Bag-of-visual-word, 2, 4
Bag-of-word, 3
Boolean model, 3
Burstiness, 27

Cache, 27
Cache replacement, 29
CamFind, 32
Close itemsets, 49
Cloud, 27
Codebook, 5, 8, 83
Content-based information retrieval, 4

FIM, 16, 47
Fisher kernel, 33
Fisher vector, 33
FLANN, 8
FP-growth, 36

Galois, 75
Geometric visual phrases, 34
GVP, 34

Hadoop, 27
Hamming embedding, 33
Hard assignment, 27
HDD, 29
HE, 33
Homography matrix, 62

Information retrieval, 3

KDTree, 83

LCM, 36
LO-RANSAC, 19, 62

Map-Reduce, 27
Maximal itemsets, 49
Mean average precision, 82
Memory, 27
MFU, 29
Most frequently used, 29

NP-hard problem, 8

Operating system, 29
OS, 29

Page replacement, 29
Parallel, 27
Pinhole camera model, 59
Projective transformation, 59

157

Index

PVSS, 29

RAM, 27, 29
RANSAC, 14, 15
RootSIFT, 27

SATCH, 32
Scale-invariant feature transform, 5
SIFT, 5
Social media, 1
Social network, 1
Soft assignment, 27

Spatial verification, 50
SSD, 29

Vector space model, 3
VirtualBox, 133
Virtualization, 133
Visual memory, 29
VMWare, 133

weak geometric consistency, 34
WGC, 34

158

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 The motivation of this research
	1.2 Background
	1.2.1 Information retrieval
	1.2.2 Image retrieval
	1.2.2.1 Feature extraction
	1.2.2.2 Codebook generation
	1.2.2.3 Database indexing

	1.3 Preliminaries
	1.3.1 Object-based image retrieval (BoVW)
	1.3.2 Query expansion (QE)
	1.3.3 Average query expansion (AQE)
	1.3.4 Frequent Item Sets Mining (FIM)

	1.4 Problem summary
	1.5 Contributions
	1.6 Outlines

	2 Literature review
	2.1 Existing image retrieval approaches
	2.1.1 Visual features
	2.1.2 Image retrieval systems
	2.1.2.1 Full system
	2.1.2.2 Compact system

	2.1.3 Feature bundling, packing, and embedding
	2.1.4 Spatial information
	2.1.5 Contextual information

	2.2 Approaches adopt frequent item sets mining (FIM) for visual problems
	2.3 Evaluation procedure

	3 Query Bootstrapping: A Visual Mining based Query Expansion
	3.1 Motivation
	3.2 Propose approach
	3.2.1 Design
	3.2.2 Method
	3.2.3 Evaluation

	3.3 Globally best with local optimized support parameter
	3.3.1 Motivation
	3.3.2 Method
	3.3.3 Evaluation

	3.4 Integrating Query Bootstrapping to a BoVW
	3.5 Results

	4 Query Bootstrapping extended
	4.1 Motivation
	4.2 Propose approach
	4.2.1 Design
	4.2.2 Method
	4.2.3 Evaluation

	4.3 On-the-fly selecting inlier threshold
	4.3.1 Motivation
	4.3.2 Method
	4.3.3 Evaluation

	4.4 Results

	5 Speed-up mining process
	5.1 Motivation
	5.2 Transaction transposition
	5.3 Usage
	5.4 Evaluation

	6 Experimental setup, evaluations, and discussion
	6.1 Datasets and evaluation protocol
	6.2 System and parameters configurations
	6.3 The overall comparison
	6.4 Impact of the number of relevant images to retrieval performance
	6.5 Automatic parameters and relative improvement
	6.6 An impact of query quality to retrieval robustness
	6.6.1 Query with noise
	6.6.2 Query with lower resolution

	6.7 Time consumption
	6.7.1 Colossal pattern

	6.8 Retrieval result examples and analysis
	6.8.1 Normal query case
	6.8.2 Small object query case
	6.8.3 Low resolution query case
	6.8.4 Noisy query case

	6.9 Discussion
	6.9.1 Benefits of using QB
	6.9.1.1 Context discovery
	6.9.1.2 Hidden visual words discovery
	6.9.1.3 Reject irrelevant words

	6.9.2 QB Limitations
	6.9.2.1 Experiments with the other datasets
	6.9.2.2 Target dataset characteristics
	6.9.2.3 Weakness summarization

	7 Conclusions
	7.1 Achievements remark
	7.2 Future work

	A PVSS: Portable Visual Search Service for Researchers
	A.1 Introduction
	A.1.1 Motivation
	A.1.2 Related work

	A.2 PVSS architecture
	A.2.1 Server modules
	A.2.2 Client modules
	A.2.3 Conclusion

	Bibliography
	Index

